Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2021

Supporting Information

A Bioinspired Janus Polyurethane Membrane for Potential Periodontal Tissue Regeneration

Yushui He,^a Xiao Wang,^a Yuanyuan He,^a Xin Zhao,^a Jingjing Lin,^a Yuan Feng,^a Jie

Chen,^b Feng Luo,^{a,} * Zhen Li, ^a Jiehua Li^a and Hong Tan^{a,*}

 ^a College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
^b Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610065, China

* Corresponding authors.

E-mail addresses: fengluo@scu.edu.cn; hongtan@scu.edu.cn

Fig. S1 (a) Synthesis scheme of LDA. (b) ¹H NMR spectra of LDA.

Fig. S2 (a) Synthesis scheme of EG12. (b) 1 H NMR spectra of EG12.

Fig. S3 Schematic diagram of the synthetic route of polyurethane.

Table S1 The proportion of each element and the proportion of N^+ to N 1s elements obtained from XPS. The value in parenthesis represents the theoretical value of N^+ element.

Sample	С	0	Ν	N^+	Urea/ Urethane	
PU-BDO	75.13	22.70	2.17	0	100	
PU-BL	73.09	24.17	2.74	0	100	
PU-BE	77.78	16.74	5.48	20.59 (14.12)	78.85	
PU-LE1	77.22	17.66	5.12	12.36 (3.24)	82.09	
PU-LE3	76.16	18.64	5.20	16.43 (8.13)	83.57	
PU-LE5	77.25	17.62	5.12	17.53 (11.65)	82.47	

Table S2 Atomic percentages on both sides of PU-LE5 polyurethane membrane

Samples	Surface atomic percentages			Carbon components			Nitrogen components	
	С	0	Ν	C-C/C-H	C-O/C-N	C=O	\mathbf{N}^+	Other N
Rough surface	77.59	19.16	3.25	58.67	32.93	8.4	15.12	84.88
Smooth surface	79.09	17.70	3.21	60.28	32.87	6.85	20.19	79.81

obtained from XPS spectra.

Fig. S4 (a) Color change of deionized water after PU-LE1 polyurethane membrane soaking in water. (b) Morphology of PU-LE1 polyurethane membrane (substrate-contact side) before and after soaking in water.

Fig. S5 Colony growth of *S. aureus* (left) and *S. mutans* (right) cultured in medium as blank control. The numbers 1-8 represent diluted 10-10⁸ times.

Fig. S6 (a) Colony growth of *E. coli* cultured with polyurethane membranes. The numbers 1-8 represent diluted $10-10^8$ times. (b) Quantitative analysis of colony forming units (CFU) of *E. coli*. *P < 0.05.

Fig. S7 The Ca/P ratio of the minerals on the surface of polyurethane membranes obtained from EDX.

Fig. S8 The polyurethane membranes were immersed in simulated body fluids for 7

days

Fig. S9 (a) Live/dead staining images of L929 implanted on rough and smooth surfaces of polyurethane membranes for 3 days. Green fluorescence and red fluorescence represent living and dead cells, respectively. Scale is 200 μ m. (b) Relative value of cell adhesion. The adhesion amount of rough surface of PU-BDO was defined as 1. ***P < 0.001.