Supporting information

"Anisotropic solid-state PLA foaming templated by crystal phase pre-oriented with 3D printing: Cell supporting structures with directional capillary transfer"

Petr Lepcio^{1*}, Juraj Svatík¹, Ema Režnáková², Daniel Zicha^{1,3}, Alan J. Lesser⁴, František Ondreáš^{1,5}

¹Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic

²Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic³Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic

⁴University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA 01003, USA ⁵Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic

*petr.lepcio@ceitec.vutbr.cz

1. FTIR estimation of the L and D content in PLA

Fig. S1: Plot of the relative ratio of FTIR peaks at 1180 and 1096 cm⁻¹ in the fingerprint region from the ref. 32 fitted with linear curve and used for the estimation of the D and L-PLA content in the PLA used throughout this study.

2. Wide angle X-ray scattering (WAXS)

Fig. S2: WAXS diffractograms, amorphous reference, and signal of the crystalline phase for samples (A) foamed, (B) saturated with CO₂, and (C) heated at 90 °C and (D) at 130 °C.

Sample	Wc, WAXS (%)		WAXS peaks						
Saturated in CO ₂		20	15.22°	16.03°	17.60°	18.77°	22.56°	24.00°	21.11°
	22.3	d_{hkl}	0.582	0.552	0.504	0.472	0.394	0.370	0.421
		hkl	110	Unclear	Unclear	200	015	016	204
Heated at 90 °C		20	14.65°	16.40°	18.72°	22.07°	24.46°		
	50.2	d_{hkl}	0.604	0.540	0.474	0.402	0.364		
		hkl	011	110/200	203	015	Unclear		
Heated at 130 °C		20	12.34°	14.78°	16.61°	18.99°	22.23°	23.86°	24.94°
	44.8	d_{hkl}	0.717	0.599	0.533	0.467	0.400	0.373	0.357
		hkl	004/103	011	110/200	203	015	Unclear	206
Foamed	43.5	2θ	14.80°	16.65°	19.01°	22.28°			
		d_{hkl}	0.598	0.532	0.466	0.399			
		hkl	011	110/200	203	015			

Table S1: Overview of WAXS peaks and crystallinity.

2. Differential Scanning Calorimetry (DSC)

Table S2: Overview of the temperatures (T) and enthalpies (ΔH) established from the DSC curves at a heating rate of 10 K \cdot min⁻¹. The subscripts *cc1*, *cc2*, *m*, and *c* relate to the first and second peak of cold

crystallization, ultimate melting, and the actual crystallinity, respectively. The w_{c, DSC} and w_{c, XRD}

represents the crystallinity obtained by DSC and WAXS, respectively.

	Tg	ΔH_{cc1}	T _{cc}	ΔH_{cc2}	T _{rc}	$\Delta H_{\rm m}$	T _m	$\Delta H_{\rm c}$	W _c , DSC	W _c , XRD
	(°C)	$(J \cdot g^{-1})$	(°C)	$(J \cdot g^{-1})$	(°C)	$(J \cdot g^{-1})$	(°C)	$(J \cdot g^{-1})$	(%)	(%)
3D printed	62,2	-33.6	98.4	-2.0	154.8	36.4	168.8	0.8	0.9	-
Saturated	37,5	-6.4	128.3	_	_	32.4	168.8	26.0	27.9	22.3
90°C	64.2	-1.7	76.0	-0.2	153.1	37.4	167.3	35.9	56.6*	50.2
130°C	63.2	-0.1	76.1	_	_	42.3	168.6	42.2	45.4	44.8
Foamed	63.6	_	_	_	_	35.9	168.4	35.9	38.6	38.2

*Related to $\Delta H_{0,\alpha'-\text{PLA}} = 68.2 \text{ J} \cdot \text{g}^{-1}$.

Table S3: Overview of the melting temperatures (T_m) established from the DSC curves at a heating rate of 1 K \cdot min⁻¹.

	<i>T</i> _{m,1}	<i>T</i> _{m,2}
	(°C)	$(J\!\cdot\!g^{-1})$
3D printed	165.4	170.8
Saturated	170.2	
90°C	169.6	_
130°C	165.5	171.2
Foamed	169.9	_

Fig. S3: DSC curves of the melting for 3D printed (black), CO₂ saturated (red), and heated at 90 (blue) and 130 °C (green) samples recorded at a heating rate of 1 K \cdot min⁻¹.

3. Additional SEM images

Fig. S4: SEM image detail of the larger canals in the cross-section direction.

Fig. S5: SEM images of (A) 3D printed PMMA foamed at 130 °C, (B) 3D printed PLA (C) 3D printed PLA heated at 130 °C, and (D) PLA foamed without external confinement. The yellow arrow and dashed line indicate the print direction and print layer boundaries, respectively.

4. Stress-strain curves

Fig. S6: Representative stress-strain curves under compression load in (A) longitudinal and (B) transverse direction respective to the print orientation.