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MATERIALS AND METHODS 

Reagents

Zinc nitrate hexahydrate (Zn(NO3)2·6H2O) was purchased from Xilong Scientific 

Co., Ltd. Guangdong, China. Sodium borohydride (NaBH4), polyvinylpyrrolidone 

(PVP), pyrazine, 1,3-Diphenylisobenzofuran (DPBF) and 3,3´,5,5´-

tetramethylbenzidine (TMB) were purchased from Sigma-Aldrich. Tetrakis (4-

carboxyphenyl) porphyrin (H2TCPP) was purchased from HEOWNS, Tianjin, China. 

Sodium citrate was purchased from Sinopharm Chemical Reagent Co., Ltd. 

Tetrachloroauric acid (HAuCl4·4H2O) was purchased from the First Reagent Factory 

(Shanghai, China). Singlet oxygen sensor green (SOSG) was purchased from 

Meilunbio Co., Ltd. 2,2,6,6-Tetramethyl-4-piperidone (4-oxo-TMP) and 

tetrabutylammonium hexafluorophosphate (TBAPF6) were purchased from Shanghai 

Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). All reagents were of 

analytical grade. All solutions were prepared using ultrapure water (18.2 MΩ cm-1). 

Instruments

UV-vis adsorption spectroscopic characterization was performed using UV-3600 

Plus Spectrophotometer (SHIMAZU, Japan). The morphologies of each sample were 

characterized by transmission electron microscope (TEM, JEM-2100, Japan) and 

scanning electron microscope (SEM, S-4800, Japan). X-ray diffraction (XRD) patterns 

were determined by D8 Advance X-ray diffractometer (Bruker, Germany) equipped 

with Cu Kα (λ =1.54 Å) radiation in the 2θ range of 5-50° at a low scanning speed of 

0.2° per minute. X-ray photoelectron Spectroscopy (XPS) spectra were analyzed by 

PHI 5000 VersaProbe (Japan). The binding energy was calibrated by means of the C1s 

peak energy (284.8 eV). EPR spectra were obtained by Bruker EMXplus electron 

paramagnetic resonance spectrometer at room temperature. Zeta potentials were 

obtained by Malvern Zetasizer Nano ZS90. Fluorescence spectra were measured on a 

fluorescence spectrophotometer (HORIBA, FluoroMax-4). Fluorescence images and 

dark field images were acquired on an Olympus RTS-2 fluorescence inverted 

microscope equipped with dark field condenser and colored CCD. All electrochemical 

measurements were recorded by CHI 660E instrument (Chenhua, China).



Fabrication of Zn-MOFs nanosheets

The Zn-MOFs nanosheets were synthesized according to a reported procedure.1 

Briefly, Zn(NO3)2·6H2O (8.9 mg, 0.03 mmol), pyrazine (0.8 mg, 0.01 mmol) and PVP 

(20 mg) were dissolved in DMF/ethanol mixture solution (12 mL, v/v=3:1). Then, 

H2TCPP (4.0 mg,0.005 mmol) in DMF/ethanol mixture solution (4 mL, v/v=3:1) was 

added drop wisely to the solution mentioned above. After that, the mixed solution was 

ultrasonicated for 10 min and kept at 353 K for 4 h. The light purple solid products 

were washed by ethanol for three times and collected by centrifuging at 8,000 r.p.m. 

for 10 min. 

Fabrication of Au nanostars (AuNSs)

AuNSs were synthesized following a previous work.2 First, the gold seeds (15 nm) 

were first prepared using the classic Frens method. The 0.1 g/mL PVP aqueous solution 

was added into the as-prepared gold colloidal (15 nm) solution under stirring for 24 h. 

Then, the obtained PVP-stabilized particles were centrifuged to remove the dissolved 

PVP and re-dispersed in anhydrous ethanol. Afterwards, 110 μL tetrachloroauric acid 

(25 mM) aqueous solution was added into 10 mL PVP (10 mM) solution, followed by 

rapid addition of PVP-coated gold particles (2 mL) under continuous stirring until the 

solution color changed from pink to blue.

Fabrication of AuNSs modified Zn-MOFs (AuNSs/Zn-MOFs)

Zn-MOFs nanosheets were assembled with AuNSs through electrostatic 

interaction. 1 mg Zn-MOFs was re-dispersed in 2 mL ultrapure water. The AuNSs/Zn-

MOFs hybrid was prepared by mixing both the AuNSs and Zn-MOFs solutions with a 

volume ratio of 2:1. Then, the mixture was sonicated for more than 1 h and the resulting 

sample was obtained. 

The ROS generation ability of AuNSs/Zn-MOFs

For the oxidation of TMB, 50 μL 5 mg/mL TMB solution and 50 μL AuNSs/Zn-

MOFs were added into 2mL HAc/NaAc buffer solution. Then, the mixture was 

irradiated under a 660 nm laser (150 mW) for various time periods. The increased 

absorption band of TMBox at 652 nm was measured to determine the generation of 

ROS. For the degradation of DPBF, 20 μL 2.5mg/mL DPBF/DMF solution and 50 μL 



AuNSs/Zn-MOFs were added into 2mL DMF. Then, the mixture was irradiated under 

a 660 nm laser (150 mW) for various time periods. The decreased absorption band of 

DPBF at 415 nm was measured to determine the generation of singlet oxygen (1O2). 

Singlet oxygen sensor green (SOSG) is a fluorescent probe with highly selective for 
1O2. 50 μL 10 μM SOSG and 50 μL AuNSs/Zn-MOFs were added into 2 mL 10 % 

D2O. The SOSG fluorescence spectroscopy was recorded with the excitation at 488 nm 

after the laser irradiation.

Dark-field scattering spectroscopy

The ITO slides were pre-treated by ultrasonic cleaning with acetone, ethanol and 

water for 3 times, respectively, and then blow-dried with N2. Afterwards, the cleaned 

ITO slides were immersed into AuNSs and AuNSs/Zn-MOFs hybrid solution for 

immobilization (1 h) and then blow-dried with N2. The AuNSs were imaged under a 

dark-field microscope and the dark-field scattering spectrum of single particle was 

collected. 

Electrochemical characterization

The open-circuit photovoltage decay (OCPVD) were measured using OCP-time 

tests with light off and on. Mott-Schottky plots were derived from impedance-potential 

tests conducted at a frequency of 1000 Hz with light off and on. Electrochemical 

impedance spectroscopy was recorded under open circuit (amplitude for 5 mV and 

frequency ranging from 106 to 0.1 Hz). Cyclic voltammetry was recorded with three 

electrode system and deoxygenated TBAPF6 acetonitrile solution (0.1 M) was 

supporting electrolyte. A nitrogen atmosphere was maintained during the measurement.

Bacterial culture

The monoclonal of E. coli and S. aureus bacteria on the solid LB agar medium 

was transferred to liquid LB medium and cultured at 37 °C under 175 rpm, respectively. 

Controlling the bacterial growth density to just reach the logarithmic growth period. 

Antibacterial activity assay

T0he antibacterial experiment was divided into four groups: bacteria + PBS, 

bacteria + AuNSs, bacteria + Zn-MOFs and bacteria + AuNSs/Zn-MOFs. For the 

growth-inhibition experiment, the groups were exposed to 660 nm (150 mW) light 



irradiation for various period. The bacterial suspensions were collected after further 

incubation for 12 h (37 °C under 175 rpm). For the plate-counting experiment, the 

bacterial suspensions were irradiated for 1.0 h and then diluted 1000 times. 20 μL 

diluted bacterial suspensions were spread on solid LB agar medium and cultured at 37 

°C for 12 h. Bacterial suspensions in different groups were irradiated with 660 nm laser. 

Subsequently, all bacterial were treated with AO and PI in PBS for 15 min in the dark 

condition and then visualized using fluorescence inverted microscope.

Preparation of bacterial samples for SEM

All treated bacteria were washed with PBS for 3 times. Glutaraldehyde (2.5 %) 

was used for fixing the bacterial cells at 4 °C for overnight. Then, the cells were washed 

using PBS and dehydrated by methanol. 
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Figure S1. The UV-vis spectra of TMB oxidation product in blank control group for 

various time (in dark condition).
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Figure S2. The UV-vis spectra of TMB oxidation product in AuNSs for various time 

(in dark condition).
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Figure S3. The UV-vis spectra of TMB oxidation product in Zn-MOFs for various time 

(in dark condition).
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Figure S4. The UV-vis spectra of TMB oxidation product in AuNSs/Zn-MOFs hybrid 

for various time (in dark condition).



Figure S5. TEM image of AuNSs/Zn-MOFs hybrid after 10 min light irradiation.
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Figure S6.  XRD patterns of Zn-MOFs and AuNSs/Zn-MOFs after 10 min light 

irradiation.
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Figure S7. The UV-vis spectra of TMB oxidation product in the AuNSs/Zn-MOFs 

hybrid under light irradiation for various time.
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Figure S8. The UV-vis spectra of TMB oxidation product in Zn-MOFs under light 

irradiation for various time.
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Figure S9. The UV-vis spectra of TMB oxidation product in the blank group under 

light irradiation for various time.

500 600 700 800
0.0

0.1

0.2

0.3

Ab
so

rb
an

ce
 (a

.u
.)

Wavelength (nm)

AuNSs

10 min

0 min

Figure S10. The UV-vis spectra of TMB oxidation product in the AuNSs under light 

irradiation for various time.
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Figure S11. UV-vis peak intensity for the TMB oxidation product vs light irradiation 

time in the blank, AuNSs, Zn-MOFs and AuNSs/Zn-MOFs hybrid.
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Figure S12. The UV-vis spectra of DPBF in the AuNSs under light irradiation for 

various time.
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Figure S13. The UV-vis spectra of DPBF in the blank group under light irradiation for 

various time.
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Figure S14. Fluorescence spectra of SOSG in the blank, AuNSs, Zn-MOFs and 

AuNSs/Zn-MOFs hybrid without light irradiation.
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Figure S15. S. aureus and E. coli incubated in LB medium with different groups for 

24h in the absence of irradiation.
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Figure S16. The antibacterial activities of S. aureus in different groups upon laser 

irradiation for various times.
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Figure S17. The antibacterial activities of E. coli in different groups upon laser 

irradiation for various times.
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Figure S18. The evaluation of cell (human immortalized keratinocytes, HaCaT) 

cytotoxicity on AuNSs/Zn-MOFs.
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Figure S19. The viability of S. aureus after exposed to different groups under light 

irradiation.

3

4

5

6

7

8

9

 

 

E.
co

li (
 Lo

g 10
CF

U/
mL

)

PB
S

Au
NS

s

Zn
-M

OF
s

Au
NS

s/Z
n-

MO
Fs

Figure S20. The viability of E. coli after exposed to different groups under light 

irradiation.



Table S1. Comparison of the performance of various method for enhancing ROS 

generation.

Nanomaterial
Enhancement 

strategy

Enhancement 

mechanism

ROS 

generation 

enhancement

Reference

PFFBT@HSA FRET

Extending the 

phosphorescence 

lifetime (τ) and 

strengthening 

phosphorescence 

intensity

1.39-fold (3)

RP/ZnO 

heterojunction

Charge 

transfer and 

electron-hole 

separation

Reducing the 

electrons-holes 

diffuse distance 

and strengthening 

the reaction site

~2.22-fold (4)

GQDs/PCN-

224
FRET

GQDs and PCN-

224 as a donor-

acceptor FRET pair

1.61-fold (5)

Cu2+-doped 

PCN-224

Retarding 

electron-hole 

recombination

The generated 

electrons trapped 

by doped copper

1.11-fold (6)

Dyad molecule

(B-1 and B-2)
RET

Boosting NIR 

photon utility
1.9-fold (7)

PMNT/PIC
Changing 

conformation

Redshifted, new 

sharp bands in the 

absorption and 

fluorescence 

spectra

~2.38-fold (8)

PCN-224 

nanodots

Decreasing 

particle size of 

MOFs

Facilitating the 

diffusion of 

generated ROS

2-fold (9)



TCPO-Ce6 CRET

Electron transfer 

from TCPO to Ce6 

and self-

illumination

2.19-fold (10)

Au NSs/Zn-

MOFs

plasmon-

induced “dual-

excitation 

effect”

Creating a rich-

electron condition 

and reducing the 

fermi level due to 

the LSPR excited 

hot-electrons 

injection

2.49-fold This work

PFFBT: poly{{1,4-(2,5-bis(12′-N,N,N-trimethylammonium)-dodecan-phenylene)-

dibromide}-co-(9H-fluorene-2,7-diyl)-co-4,7(2,1,3-benzothiadiazole)}; HAS: human 

serum albumin; GQDs: graphene quantum dots; PMNT: poly(3-(3’-N,N,N-

triethylammonium-1’-propyloxy)-4-methyl-2,5-thiophene chloride); PIC: poly-

isocyanides; TCPO: bis(3,4,6-trichloro2-(pentyloxycarbonyl)phenyl)oxalate; RP: red 

phosphorus; B-1: moiety: distyryl-BODIPY; B-2: moiety: diiodo-distyryl-BODIPY; 

FRET: fluorescence resonance energy transfer; RET: resonance energy transfer; 

CRET: chemiluminescence resonance energy transfer 
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