Supplementary Information

A periodontal tissue regeneration strategy via biphasic
 release of zeolitic imidazolate framework-8 and FK506

using a uniaxial electrospun Janus nanofiber

Maolei Sun, ${ }^{\text {a }}$ Yun Liu, ${ }^{a}$ Kun Jiao, ${ }^{a}$ Wenyuan Jia, ${ }^{\text {b }}$ Kongzhao Jiang, ${ }^{a}$ Zhiqiang Cheng, ${ }^{\text {c }}$ Guomin Liu, ${ }^{* b}$ and Yungang Luo*a
${ }^{\text {a }}$ Department of Stomatology, the Second Hospital of Jilin University, Changchun 130041, P. R. China
${ }^{\text {b }}$ Department of Orthopedics, the Second Hospital of Jilin University, Changchun 130041, P. R. China
${ }^{c}$ College of Resources and Environment, Jilin Agriculture University, Changchun 130118, P. R. China

* Correspondence authors:

Guomin Liu, Department of Orthopedics, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun 130041, P. R. China. E-mail: liuyedao123@163.com

Yungang Luo, Department of Stomatology, The Second Hospital of Jilin University, No. 218 Ziqiang
Street, Changchun 130041, P. R. China. E-mail: luoygjlu@sina.com

Methods

Preparation of ZIF-8 nanoparticles

ZIF-8 nanoparticles (ZIF-8 NPs) was carried out at room temperature as reported, previously. ${ }^{1} \mathrm{In}$ brief, $1.17 \mathrm{~g} \mathrm{Zn}(\mathrm{NO})_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, dissolved in 8 g of deionized (DI) water was added to 22.7 g 2-methylimidazole dissolved in 80 g DI water. The reaction solution was stirred at room temperature for $\sim 5 \mathrm{~min}$. After that, the produce was isolated via centrifugation, washed with deionized DI water and dried in a vacuum oven. The morphology of ZIF-8 NPs was obtained by transmission electron microscopy (TEM, JOEL JEM-201). The information on the crystalline phase structure of ZIF-8 NPs was obtained by X-ray diffractometer (XRD, SmartLab SE). The functional groups of ZIF-8 NPs were measured by Fourier transform infrared spectrometer (FTIR, FTIR-650).

Results

Characterization of ZIF-8 NPs

The morphology of ZIF-8 NPs was rhombic dodecahedral in shape and the size distribution was $110.58 \pm 9.39 \mathrm{~nm}$ (Fig. S1-S2). The XRD pattern of the synthesized ZIF-8 NPs were in good agreement with the simulated crystal image, suggesting a pure phase of the synthesized ZIF-8 NPs (Fig. S3). The FT-IR spectrum showed the peak positions and their assignments agreed well with those reported in the literature (Fig. S4). ${ }^{2}$ These results showed the successful synthesis of ZIF-8 NPs and can be used without further purification.

Figures

Fig. S1. TEM images of ZIF-8 NPs.

Fig. S2. Size distribution of the ZIF-8 NPs.

Fig. S3. XRD patterns of the ZIF-8 NPs.

Fig. S4. FT-IR spectra of the ZIF-8 NPs.

Fig. S5. The phase separation phenomenon in precursor solution.

Fig. S6. Proliferation of BMSCs on PP Janus nanofibers and PPZ Janus nanofibers with different concentrations of ZIF-8 NPs. Data are presented as means \pm SD. ${ }^{*} P<0.05,{ }^{* *} P<0.01,{ }^{* * *} P<$ 0.001 .

Fig. S7. Proliferation of BMSCs on PP Janus nanofibers, PPZ Janus nanofibers, and PPZF Janus nanofibers with different concentrations of FK506. Data are presented as means \pm SD. * $P<0.05$, ** $P<0.01,{ }^{* * *} P<0.001$.

Fig. S8. H\&E staining of vital organs including hearts, livers, spleens, lung and kidneys. Scale bar is $10 \mu \mathrm{~m}$.

Table

Table S1. Primer Sequences of the Genes Involved in this Study

primer	sequence (5' to 3')
rat-6-actin-F	GGAGATTACTGCCCTGGCTCCTA
rat-8-actin-R	GACTCATCGTACTCCTGCTTGCTG
rat-Runx2-F	CATGGCCGGGAATGATGAG
rat-Runx2-R	TGTGAAGACCGTTATGGTCAAAGTG
rat-Osx-R	CATCCATGCAGGCATCTCA
rat-Alp-F	CTGCCCACCACCTAACCAA
rat-Alp-R	CATCGCCTATCAGCTAATGCACA
rat-Ocn-F	ATGAGGTCCAGGCCATCCAG
rat-Ocn-R	TTATTGTTTGAGGGGCCTGGG

References

1 Y. C. Pan, Y. Y. Liu, G. F. Zeng, L. Zhao, Z. P. Lai, Chem. Commun., 2011, 47, 2071-2073.

2 S. R. Venna, M. A. Carreon, J. Am. Chem. Soc., 2010, 132, 76-78.

