Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Preparation of thermo-responsive drug carrier consisting of biocompatible triblock

copolymer and fullerene

Kohei Kitano,^a Kazuhiko Ishihara^b and Shin-ichi Yusa*^a

^aDepartment of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan

^bDepartment of Materials Engineering and Department of Bioengineering, School of Engineering,

The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

E-mail: <u>yusa@eng.u-hyogo.ac.jp</u>

Scheme S1. Change in the chemical structure of SOSG due to singlet oxygen (¹O₂) detection.

Scheme S2. Synthesis of PEG₄₅-*b*-PUEM₁₀₁-*b*-PMPC₉₉ (EUM).

Fig. S1 ¹H NMR spectra for (a) PEG₄₅-MTPA, (b) PEG₄₅-b-PAEM₁₀₁, and (c) PEG₄₅-b-PAEM₁₀₁-b-PMPC₉₉ (EAM) in D₂O at 25°C.

Fig. S2 GPC elution curves for (a) PEG₄₅-MTPA using THF as an eluent at 40°C detected by RI and (b) PEG₄₅-*b*-PAEM₁₀₁ (-----), EAM (-----), and EUM (-----) using acetate buffer (0.5 M CH₃COOH and 0.3 M Na₂SO₄) as an eluent at 40°C detected by RI.

Fig. S3 ¹H NMR spectra for (a) PEG_{45} -*b*-PAEM₁₀₁-*b*-PMPC₉₉ (EAM), (b) PEG_{45} -*b*-PUEM₁₀₁-*b*-PMPC₉₉ (EUM) in D₂O at 25°C, and (c) at 80°C.

Fig. S4 (a) UV-vis absorption spectra of C_{70} /PMPC at $C_p = 2$ g/L at varying amounts of used C_{70} ($[C_{70}]_f$) and (b) amount of solubilized C_{70} in PBS ($[C_{70}]_s$) as a function of $[C_{70}]_f$.

Fig. S5 UV-vis absorption spectra of C_{70} /PMPC (-----), C_{70} with PEG₄₅ (- - - -), and C_{70} with PUEM₁₀₀ (-----) at $C_p = 2$ g/L in PBS at 25°C.

Fig. S6 Zimm plots for (a) C_{70} /EUM and (b) C_{70} /PMPC at $C_p = 0.05$ g/L in PBS at 25°C.

Fig. S7 Hydrodynamic radius (R_h) of C₇₀/EUM ($C_p = 2 \text{ g/L}$, [C₇₀]_s = 0.313 g/L) at (\bigcirc) 25°C and (\bigtriangleup) 70°C in PBS with 5 cycle heating and cooling processes.

Fig. S8 Changes in fluorescence spectra for SOSG (2 μ M) (a) with C₇₀/EUM ([C₇₀] = 0.03 (g/L), (b) without C₇₀, and (c) without EUM and C₇₀ as a function of irradiation time at 25°C.

Fig. S9 Release profiles estimated from the fluorescence intensity of (\bigcirc) DOX@C₇₀/EUM and (\Box) DOX as a function of dialysis time at 25°C. *I* is the fluorescence intensity and *I*₀ is the initial intensity.

Fig. S10 Hydrodynamic radius (R_h) distributions of DOX@C₇₀/EUM (a) before, (b) after encapsulating DOX, and (c) after DOX release in PBS at 25°C.