Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Fe³⁺-coordination Mediated Synergistic Dual-network Conductive Hydrogel as Sensitive and Highly-stretchable Strain Sensor with Adjustable Mechanical Properties

Xueying Sun, Haixiao Wang, Yi Ding, Yuanqing Yao, Yaqing Liu, Jun Tang*

Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China

*Corresponding author.

Email: <u>chemjtang@jlu.edu.cn</u>.

Tel./Fax: +86-431-88498179.

AAm	AA	β-CD	H_2O	FeCl ₃ ·6H ₂ O	ANI in	HCl in	Sample
(g)	(g)	(g)	(mL)	(M)	ANI-HCl	ANI-HCl	
					(vt%)	(M)	
4	1.12	1	11	0.1	3	0.12	PANI-P(AAm-co-AA)@Fe ³⁺ (0.12 M)
4	1.12	1	11	0.1	3	0.25	PANI-P(AAm-co-AA)@Fe ³⁺ (0.25 M)
4	1.12	1	11	0.1	3	0.39	PANI-P(AAm-co-AA)@Fe ³⁺ (0.39 M)
4	1.12	1	11	0.1	3	0.40	PANI-P(AAm-co-AA)@Fe ³⁺ (0.40 M)
4	1.12	1	11	0.1	3	0.41	PANI-P(AAm-co-AA)@Fe ³⁺ (0.41 M)
4	1.12	1	11	0.1	3	0.42	PANI-P(AAm-co-AA)@Fe ³⁺ (0.42 M)
4	1.12	1	11	0.1	3	0.43	PANI-P(AAm-co-AA)@Fe ³⁺ (0.43 M)
4	1.12	1	11	0.1	3	0.5	PANI-P(AAm-co-AA)@Fe ³⁺ (0.5 M)
4	1.12	1	11	0.1	3	1.0	PANI-P(AAm-co-AA)@Fe ³⁺ (1.0 M)
4	1.12	1	11	0.1	3	1.5	PANI-P(AAm-co-AA)@Fe ³⁺ (1.5 M)
4	1.12	1	11	0.1	3	2.0	PANI-P(AAm-co-AA)@Fe ³⁺ (2.0 M)

Table S1 The ratio of components

Fig. S1 FTIR spectra of (a) P(AAm-*co*-AA) and *P(AAm-*co*-AA), (b) PAAm and PAAm+ β -CD.

Fig. S2 (a-e) SEM images of PANI-P(AAm-*co*-AA)@Fe³⁺ with corresponding EDX elemental mapping images of C, Fe, O, N; (f) EDX spectrum of PANI-P(AAm-*co*-AA)@Fe³⁺.

Fig. S3. TGA curves of P(AAm-co-AA), P(AAm-co-AA)@Fe³⁺ and PANI-P(AAm-co-AA)@Fe³⁺.

Fig. S4 ¹H-NMR spectra of ANI and ANI+ β -CD in HCl solution in D₂O-DMSO (v/v=5:1) with tetramethylsilane (TMS) as the internal standard.

Table S2 Phenomenon of PANI-P(AAm-co-AA)@Fe	2 ³⁺ and solution when prepared	d at different acidity

	2 M	1.5 M	1.0 M	0.5 M	0.25 M	0.12 M
Hydrogel	Dark green and	Dark green	Dark green	Dark green	Dark green	Unchanged
	the gel becomes	and the gel	and the gel	and the gel	substance	
	a viscous fluid	becomes a	becomes a	becomes a	attached to the	
	rapidly	viscous fluid	viscous fluid	viscous fluid	surface	
		after 10 min	after 2 h	after 20 h		
Solution	-	-	-	-	Faint yellow	Unchanged

for 24 h.

Fig. S5 Tensile strain curves of P(AAm-co-AA), P(AAm-co-AA)@Fe³⁺ and PANI-P(AAm-co-

 $AA)@Fe^{3+}.$

Fig. S6 The elastic, ultimate tensile strength and fracture strain of (a, c, e) PANI-P(AAm-co-

AA)@Fe³⁺ prepared by oxidation in 3% ANI-HCl solution with different acidity for 24 h and (b, d, f)

PANI-P(AAm-co-AA)@Fe³⁺ prepared in 3% ANI-HCl solution with the acidity of 0.40 M for

different oxidation time.

Fig. S7 Changes in the appearance of PANI-P(AAm-co-AA)@Fe³⁺ with different oxidation time.

Fig. S8 Relative resistance change ($\Delta R/R_0$) and sensitivity of PANI-P(AAm-co-AA)@Fe³⁺ (prepared

in 3% ANI-HCl solution with the acidity of 0.39 M for 24 h) under strain.

Table S3 Comparison of the performances of PANI-P(AAm-co-AA)@Fe³⁺ and other PANI-based

Materials	Sensing	Stress	Gauge factor	Reference
	range			
PAAm-PANI hydrogel	<300%	0.6 MPa	5.7 (low strain)	1
			1.48 (40%-300%)	
PAAm-CSM-PANI hydrogel	<85%	6 MPa	0.35 (<1 kPa)	2
	(Compression)		0.05 (1-10 kPa)	
			10 ⁻⁵ (>500 kPa)	
PANI-PSS hydrogel	<300%	4 kPa	0.034	3
PANI-PAA-Phytic acid hydrogel	<400%	1.6 MPa	0.116 (100%)	4
			0.047 (100%-400%)	
PVP/PVA/CNCs-Fe ³⁺ hydrogel	<200%	0.25 MPa	0.478	5
APP hydrogel	<140%	2.56 MPa	0.16 (0-100%)	6
			0.39 (100%-130%)	
BSP-PANI hydrogel	<525%	0.218 MPa	0.85	7
PANI-P(AAm-co-AA)@Fe ³⁺	<715.4%	0.071-0.3054	0.45	This Work
		MPa		

conductive hydrogel materials.

Fig. S9 Conductivity of PANI-P(AAm-co-AA)@Fe³⁺ prepared with different Fe³⁺ concentration.

Fig. S10 Photo of PANI-P(AAm-co-AA)@Fe³⁺ prepared with different Fe³⁺ concentration.

Fig. S11 Tensile curves of PANI-P(AAm-co-AA)@Fe³⁺ prepared with different Fe³⁺ concentration.

Fig. S12 (a) Infrared spectra of β-CD, *PANI-P(AAm-co-AA)@Fe³⁺, physical mixture of *PANI-P(AAm-co-AA)@Fe³⁺ and β-CD and PANI-P(AAm-co-AA)@Fe³⁺; (b) XRD patterns of β-CD,
*PANI-P(AAm-co-AA)@Fe³⁺, physical mixture of *PANI-P(AAm-co-AA)@Fe³⁺ and β-CD and

PANI-P(AAm-co-AA)@Fe³⁺.

Fig. S13 SEM images of (a) *PANI-P(AAm-co-AA)@Fe³⁺ and (b) PANI-P(AAm-co-AA)@Fe³⁺.

Fig. S14 Tensile curves of PANI-P(AAm-co-AA)@Fe³⁺ and *PANI-P(AAm-co-AA)@Fe³⁺.

Fig. S15 Resistance and $\Delta R/\bar{R}$ of PANI-P(AAm-co-AA)@Fe³⁺ and *PANI-P(AAm-co-AA)@Fe³⁺.

Fig. S16 Comparison of the cycle performance of PANI-P(AAm-co-AA)@Fe³⁺ and *PANI-P(AAm-

co-AA)@Fe³⁺.

Fig. S17 Response time of PANI-P(AAm-co-AA)@Fe³⁺.

Fig. S18 $\Delta R/R_0$ signal changes of the volunteer speaking (a) "Hello"; (b) "Strain sensor" and "Goodbye".

Notes and references

- 1. Z. Wang, J. Chen, Y. Cong, H. Zhang, T. Xu, L. Nie and J. Fu, *Chemistry of Materials*, 2018, **30**, 8062-8069.
- 2. J. Duan, X. Liang, J. Guo, K. Zhu and L. Zhang, Adv Mater, 2016, 28, 8037-8044.
- 3. J. Chen, Q. Peng, T. Thundat and H. Zeng, *Chemistry of Materials*, 2019, **31**, 4553-4563.
- 4. T. Wang, Y. Zhang, Q. Liu, W. Cheng, X. Wang, L. Pan, B. Xu and H. Xu, *Advanced Functional Materials*, 2018, **28**.
- 5. Y. J. Liu, W. T. Cao, M. G. Ma and P. Wan, ACS Appl Mater Interfaces, 2017, 9, 25559-25570.
- 6. J. Wang, Y. Lin, A. Mohamed, Q. Ji and H. Jia, *Journal of Materials Chemistry C*, 2021, 9, 575-583.
- 7. H. Qin, Y. Chen, J. Huang and Q. Wei, *Macromolecular Materials and Engineering*, 2021, 306.