Supplementary Information

## An antibacterial biomimetic adhesive with strong adhesion in both dry and underwater situations

Lin Li, Haitao Peng, Yan Du, Heng Zheng, Aiping Yang, Guoyu Lv\*, and Hong Li\* College of Physics, Sichuan University, Chengdu 610065, China

\* Corresponding Authors:

Email: lgy929@126.com (G. Lv), lih2013@scu.edu.cn (H. Li).

Content:

Table S1 – S4 and Figure S1 – S16 (PDF)

Video S1. The sticky DP@TA/Gel adhesive formation after addition DP (MP4)

Video S2. A non-viscous white flocculent gel was formed when without addition DP (MP4)

Video S3. The DP@TA/Gel adhesive exhibited soft structure and high extensibility (MP4)

Video S4. The detachment of the bonded fingers by the DP@TA/Gel adhesive (MP4) Video S5. The DP@TA/Gel adhesive became into a white sticky adhesive immediately on contacting with water (MP4)

Video S6. The bonded mental sheets with the bonding area of  $10 \times 8 \text{ cm}^2$  can lift the author (about 60 kg) and even support pull-ups (MP4)

Video S7. The adhesive can glue the pigskin immediately underwater without any stimulus (MP4)

| A dhaairraa aa daa | DP   | 10 w/v% Gel solution | 20 w/v% TA solution |
|--------------------|------|----------------------|---------------------|
| Adhesives codes    | (mL) | (mL)                 | (mL)                |
| DP0@TA-Gel         | 0    | 2                    | 8                   |
| DP1@TA-Gel         | 1    | 2                    | 8                   |
| DP2@TA-Gel         | 2    | 2                    | 8                   |
| DP3@TA-Gel         | 3    | 2                    | 8                   |
| DP4@TA-Gel         | 4    | 2                    | 8                   |

 Table S1. The compositions of adhesives

 Table S2. The compositions of simulated seawater

| Reagent                              | Concentration (g/L) |  |
|--------------------------------------|---------------------|--|
| NaCl                                 | 25.5                |  |
| KC1                                  | 0.67                |  |
| MgCl <sub>2</sub> •6H <sub>2</sub> O | 4.7                 |  |
| MgSO <sub>4</sub>                    | 6.3                 |  |
| CaCl <sub>2</sub>                    | 1.35                |  |
| NaHCO <sub>3</sub>                   | 0.18                |  |

|         | 5      | 8      |        |
|---------|--------|--------|--------|
| Element | 0 h    | 0.5 h  | 12 h   |
| С       | 57.56% | 56.87% | 56.03% |
| Ν       | 1.64%  | 3.37%  | 8.17%  |
| 0       | 40.79% | 39.76% | 35.80% |

 Table S3. The atom percent of element on the adhesive surface obtained form EDS analysis after immersing different time

Table S4. The proportion of C–OH and C=O on the adhesive surface after immersing

in water for different time

| Group | 0 h    | 0.5 h  | <b>12 h</b><br>36.28% |
|-------|--------|--------|-----------------------|
| С-ОН  | 51.78% | 48.49% |                       |
| C=O   | 9.54%  | 16.43% | 20.26%                |

The calculations to assess the proportion of C–OH and C=O on the adhesive surface were performed according to the values from the peak fits of high-resolution XPS C1s spectra below.

C–OH:

0h: 6639.18/(4959.17+6639.18+1223.09)=51.78%

0.5h: 11213.11/(8114.52+11213.11+3798.61)=48.49%

12h: 11481.38/(13754.73+11481.38+6412.03)=36.28%

C=O:

0h: 1223.09/(4959.17+6639.18+1223.09)=9.54% 0.5h: 3798.61/(8114.52+11213.11+3798.61)=16.43% 12h: 6412.03/(13754.73+11481.38+6412.03)=20.26%



Figure S1. Appearance of DP.

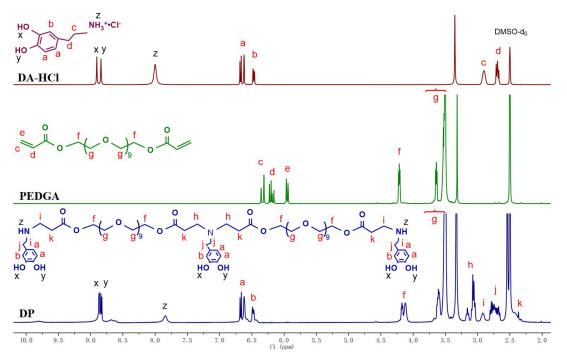



Figure S2. <sup>1</sup>H NMR spectra of DA-HCl, PEGDA and DP in DMSO-d6.

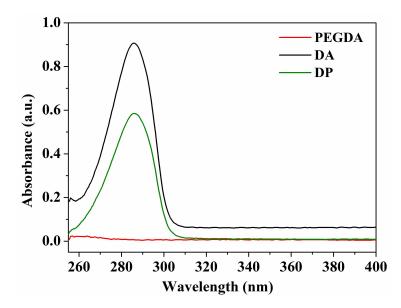



Figure S3. The UV-Vis absorption spectra of PEGDA, DA, and DP.



Figure S4. The DP solution (0.1 v/v%) without (left)/with (right) addition of NaIO<sub>4</sub>.

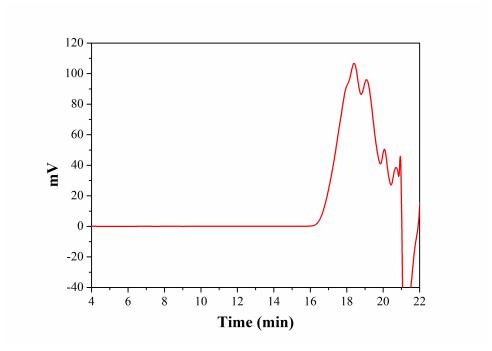



Figure S5. The representative GPC traces of DP.

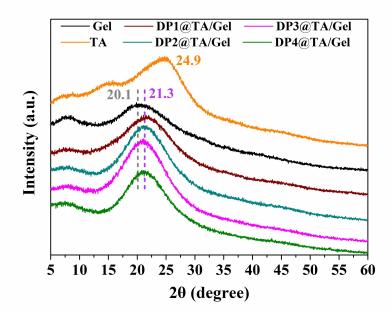



Figure S6. The XRD patterns of Gel, TA and DP@TA/Gel adhesives.

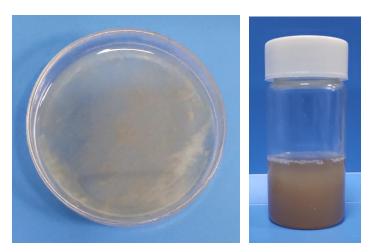



Figure S7. DP@TA/Gel adhesives formation was disturbed at the presence of urea.

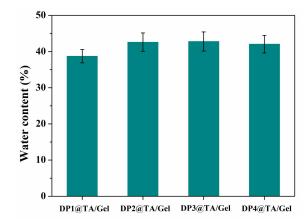



Figure S8. Water content of the DP@TA/Gel adhesives.

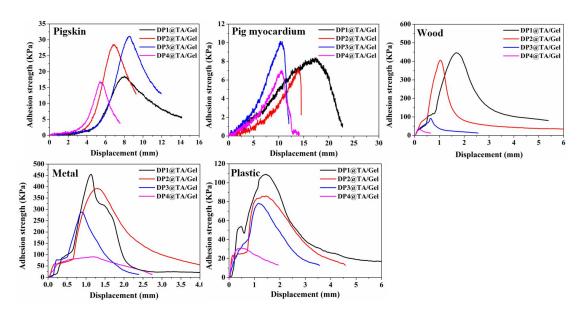



Figure S9. The representative adhesion curves of the adhesives on different substrates.



**Figure S10.** The bonded metal sheets with the bonding area of  $10 \times 8 \text{ cm}^2$  can lift the author (60 kg) and even support pull-ups.

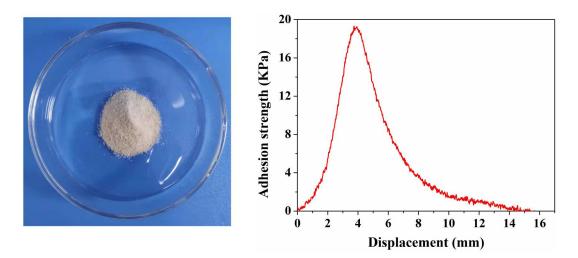



Figure S11. Photograph of the powder of the lyophilized adhesive (left) and the representative adhesion curve of the recovered adhesive on pigskin (right). The adhesion strength on pigskin was  $18.19 \pm 1.9$  kPa.

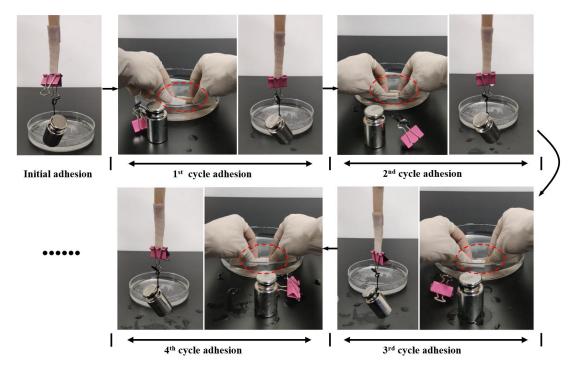



Figure S12. The repeatable adhesion performance of the DP@TA/Gel adhesive on pigskin underwater.

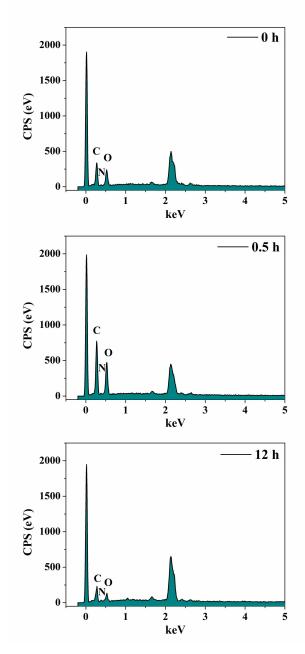



Figure S13. The EDS of the adhesive after immersing underwater for different time.

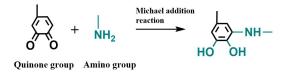
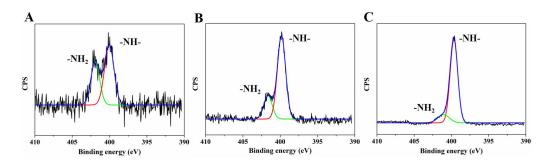




Figure S14. The Michael addition reaction between the quinone and amino groups.



**Figure S15.** Peak-fitting XPS spectra in the N1s regions of the adhesive after immersing in water for (A) 0 min, (B) 30 min and (C) 12 h.

The calculations to assess the proportion of  $-NH_2$  of the adhesive were performed according to the values from the peak fits of high-resolution XPS N1s spectra below. immersing in water for 0 min: 285.71/(285.71+430.43) = 39.90%immersing in water for 30 min: 562.53/(562.53+1964.85) = 22.26%immersing in water for 12 h: 931.28/(931.28+6231.39) = 13.00%

The degree of the cross-linking of the DP@TA/Gel adhesive:

 $D_{(0.5)} = (39.90\% - 22.26\%) / 39.90\% = 44.21\%$ 

 $D_{(12)} = (39.90\% - 13.00\%) / 39.90\% = 67.42\%$ 

Where the  $D_{(0.5)}$  and  $D_{(12)}$  represented the degree of the cross-linking of the DP@TA/Gel adhesive after immersing in water for 30 min and 12 h.

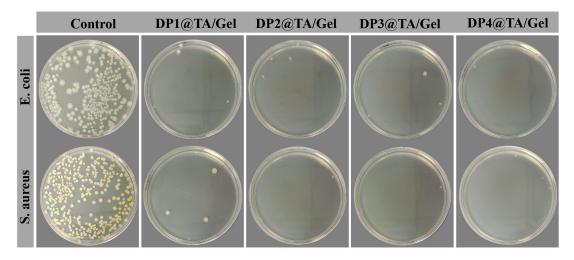



Figure S16. Photographs of the bacterial colonies on agar after incubation for 48 h.

## **Supplementary Videos:**

Video S1. The sticky DP@TA/Gel adhesive formation after addition DP.

Video S2. A non-viscous white flocculent gel was formed when without addition DP.

Video S3. The DP@TA/Gel adhesive exhibited soft structure and high extensibility.

Video S4. The detachment of the bonded fingers by the DP@TA/Gel adhesive.

**Video S5.** The DP@TA/Gel adhesive became into a white sticky adhesive immediately on contacting with water.

**Video S6.** The bonded mental sheets with the bonding area of  $10 \times 8 \text{ cm}^2$  can lift the author (about 60 kg) and even support pull-ups.

**Video S7.** The adhesive can glue the pigskin immediately underwater without any stimulus.