Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2021

Supporting Information

for

Perylene diimide-based nanoring architecture for exogenous and endogenous ATP detection: Biochemical assay for monitoring phosphorylation of glucose

Prabhpreet Singh^{*a}, Poonam Sharma^a, Neha Sharma^b and Satwinderjeet Kaur^b

^aDepartment of Chemistry, UGC Centre for Advanced Studies II, Guru Nanak Dev University, Amritsar 143 005, India. Tel: +91-84271-01534

^bDepartment of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143 005, India.

Email: prabhpreet.chem@gndu.ac.in

Synthesis of tyrosine-based alkyl amide (1)

To the solution of Boc-L-tyrosine (500 mg, 1.77 mmol) in a minimum quantity of DMF, N,N'diisopropylethylamine (DIEA) (310 µL, 1.77 mmol) was added. Subsequently, 1-Ethyl-3-(3'dimethylaminopropyl) carbodiimide hydrochloride (EDC.HCl) (375 mg, 1.95 mmol) and hydroxybenzotriazole (HOBt) (264 mg, 1.95 mmol) were slowly added to the reaction mixture. After a time interval of 15 minutes, tert-butyl (4-aminobutyl)carbamate (334 mg, 1.77 mmol) was added to the reaction mixture and stirring continued for another 4h. The progress of the reaction was checked by *tlc*. After completion of the reaction, the DMF was removed on a rotary evaporator and residue was extracted with water and ethyl acetate. The ethyl acetate part was dried over Na₂SO₄ and then concentrated under vacuum. The crude product was purified by column chromatography (neutralized SiO₂, 3: 97, EtOAc: CHCl₃, v/v) to isolate pure compound 1, solid, $R_f = 0.45$; yield = 56%; ¹H NMR (500 MHz, CDCl₃, 25°C); δ 7.56 (bs, 1H, -OH), 7.05 (d, J = 7.5 Hz, 2H), 6.80 (d, J = 8.0 Hz, 2H), 5.99 (bs, 1H, -NH), 5.31 (bs, 1H, -NH), 4.79 (bs, 1H, -NH), 4.22 (bt, 1H, tyrosine -CH), 2.86–3.24 (m, tyrosine -CH₂ and -CH₂ of butyl chain, 6H), 1.47 (s, 9H), 1.44 (s, 9H), 1.34–1.21 (m, 4H); ¹³C NMR (125 MHz, CDCl₃, 25°C)δ 171.40, 156.41, 155.55, 155.48, 130.37, 128.00, 115.90, 80.20, 79.74, 56.51, 40.22, 39.00, 38.28, 28.47, 28.33, 27.63, 26.51; IR spectrum (ATR): v_{max} [cm⁻¹] = 3339.7, 2937.1, 1759, 1684.8, 1513.3, 1364.2, 1237.5, 1162.9 cm⁻¹.

1. Experimental Section

Figure S1a: ¹H NMR spectrum of Compound 1 in CDCl₃.

Figure S1b: ¹³C NMR spectrum of Compound 1 in CDCl₃.

Figure S1c: FTIR (ATR) spectrum of Compound 1.

Figure S2a: ¹H NMR spectrum of PDI 2 in CDCl₃.

Figure S2b: ¹³C NMR spectrum of PDI 2 in CDCl₃.

Figure S2c: ¹H-¹H COSEY NMR spectrum of PDI 2 in CDCl₃.

Figure S2d: FTIR spectrum of PDI 2.

Figure S3a: ¹H NMR spectrum of PDI 3 in DMSO- d_6 .

Figure S3b: ¹³C NMR spectrum of PDI 3 in DMSO- d_6 .

Figure S3c: ¹H-¹H COY NMR spectrum of PDI 3 in DMSO-*d*₆.

Figure S3d: FTIR spectrum of PDI 3.

Figure S3e: Mass spectrum (Full and zoomed view) of PDI 3.

Figure S4a: (a) TD-DFT spectrum of PDI 3; (b) experimentally determined UV-Vis spectrum of PDI 3.

Figure S4b: TD-DFT spectrum of PDI 2.

Figure S5: TGA data of compound 1.

Anton Paar Polarimeter - Measurement(s)

MCP 150 Software Version: 1.50.4074.82 Serial Number: 82104498

Unique Id 413

- Sample Name:
 Date:
 Username:
- Sample State:
- 03/12/2020 05:00 PM Administrator Ok
- Measurement Mode:
- Measurement Result:
- Concentration: Optical Rotation:
- Set Temperature:
 Temperature:

Compound 1 (CHCl₃)

- Specific Rotation +5.000 ° +5.000 ° +0.400 g/100ml +0.002 ° +25.0 °C +25.0 °C

Anton Paar Polarimeter - Measurement(s)

PDI 2 (CHCl₃) 10/31/2020 - 11:36 AM

Administrator Ok

+25.0 °C +25.0 °C

MCP 150 Software Version: 1.50.4074.82 Serial Number: 82104498

Unique Id 539

Sample Name: Date:

- Username:
 Sample State:
- Specific Rotation +27.500 ° Measurement Mode:
 Measurement Result:
 - +0.400 g/100ml +0.011 °
- Concentration:
 Optical Rotation:
- Set Temperature:
- Temperature:

Anton Paar Polarimeter - Measurement(s)

MCP 150 Software Version: 1.50.4074.82 Serial Number: 82104498

Unique Id 544

- Sample Name:
 Date:
 Username:
- Sample State:
- Measurement Mode

PDI 3 (CHCl₃) 10/31/2020 - 12:04 PM Administrator Ok

Specific Rotation +25.000 ° +0.400 g/100ml +0.010 ° +25.0 °C +25.0 °C

- Measurement Mode:
 Measurement Result:
 Concentration:
 Optical Rotation:
 Set Temperature:
 Temperature:

Software Version: 1.50.4074.82 Serial Number: 82104498

Unique Id 642		Unique Id 640
 Sample Name: Date: Username: Sample State: 	PDI 3 (DMSO) 07/17/2021 - 01:34 PM Administrator Ok	 Sample Name Date: Username: Sample State:
 Measurement Mode: Measurement Result: Concentration: Optical Rotation: Set Temperature: Temperature: Wavelength in air: Wavelength in vacuum: Cell Length: 	Specific Rotation +20.000 ° +0.100 g/100ml +0.002 ° +25.0 °C +25.0 °C +589.28 nm +589.44 nm +10.00 mm	 Measurement Measurement Concentration Optical Rotation Set Temperative: Temperature: Wavelength in Wavelength: Cell Length:

Anton Paar Polarimeter - Measurement(s) Anton Paar Polarimeter - Measurement(s)

Software Version: 1.50.4074.82 Serial Number: 82104498

Sample Name:	ATP Complex(DMSO)		
Date:	07/17/2021 - 01:15 PM		
Username:	Administrator		
Sample State:	Ok		
Measurement Mode:	Specific Rotation		
Measurement Result:	-80.000 °		
Concentration:	+0.100 g/100ml		
Optical Rotation:	-0.008 °		
Set Temperature:	+25.0 °C		
Temperature:	+25.0 °C		
Wavelength in air:	+589.28 nm		
Wavelength in vacuum:	+589.44 nm		
Cell Length:	+10.00 mm		

Figure S6: Specific optical rotations of all synthesized derivatives.

Table for Specific optical rotation values

Compound	Solvent	Optical Rotation	Concentration	Specific Rotation
Compound 1	CHCl ₃	+0.002°	+0.400 g/100ml	+5.000°
PDI 2	CHCl ₃	+0.011°	+0.400 g/100ml	+27.500°
PDI 3	CHCl ₃	+0.010°	+0.400 g/100ml	+25.000°

Table for Specific optical rotation values

Compound	Solvent	Optical Rotation	Concentration	Specific Rotation
Compound 1	CHCl ₃	+0.002°	+0.400 g/100ml	+5.000°
PDI 2	CHCl ₃	+0.011°	+0.400 g/100ml	+27.500°
PDI 3	CHCl ₃	+0.010°	+0.400 g/100ml	+25.000°
PDI 3	DMSO	+0.002°	+0.100 g/100ml	+20.000°
PDI 3 + ATP	DMSO	-0.008°	+0.100 g/100ml	-80.000°

Figure S7: The UV–Vis (a) and fluorescence (b) spectra of PDI 2 (10 μ M) in different DMSO-water ratios. $\lambda_{ex} = 490$ nm, slit width (ex/em) =5/5.

Figure S8: (a,b) Plot and tabulated value of Franck–Condon (A_{0-0}/A_{0-1}) values of PDI **2** versus H₂O fraction in DMSO; (c) Plot of the degree of aggregation (α_{agg}) versus H₂O fraction in DMSO and (d) plot of ΔG^* versus H₂O fraction in DMSO.

Figure S9. The fluorescence pH titration of PDI 3 (5 μ M) in 50% H₂O-DMSO solution.

Figure S10: (a) UV-Vis response of PDI 3 toward various anionic analytes; (b) bar graph of I/I_o plots of absorbance and emission data showing response towards anions and NPPs.

Figure S11: (a) Fluorescence response of **PDI 3** toward various anionic analytes; (b) bar graph of I/I_o plots of absorbance and emission data showing response towards anions and NPPs. (Not complete Image).

Figure S12a: B-H Plot of PDI 3 with ATP.

Figure S12b: Job plot of PDI 3 with ATP.

Table S2 Changes in the Franck-Codon factor (A_{0-0}/A_{0-1}) on interaction with ATP:

ATP Equivalents	A ₀₋₁ (512 nm)	A ₀₋₀ (535 nm)	A ₀₋₀ /A ₀₋₁
PDI 3	0.268	0.274	1.022388
0.001 ATP	0.254	0.26	1.023622
0.005 ATP	0.23	0.238	1.034783
0.01 ATP	0.219	0.227	1.03653
0.015 ATP	0.215	0.223	1.037209
0.02 ATP	0.209	0.216	1.033493
0.07 ATP	0.192	0.197	1.026042
0.1 ATP	0.188	0.193	1.026596
0.15 ATP	0.184	0.187	1.016304
0.2 ATP	0.178	0.178	1
0.3 ATP	0.169	0.166	0.982249
0.4 ATP	0.167	0.159	0.952096
0.5 ATP	0.162	0.15	0.925926
0.8 ATP	0.156	0.142	0.910256
1 ATP	0.154	0.136	0.883117

1.5 ATP	0.151	0.132	0.874172
2 ATP	0.147	0.123	0.836735
3 ATP	0.145	0.12	0.827586
4 ATP	0.14	0.114	0.814286
5 ATP	0.14	0.114	0.814286
6 ATP	0.139	0.112	0.805755

Fig. S13 Changes in (a) absorbance (10 μ M) and (c) emission (5 μ M) spectra of PDI 3 with gradual increase of ATP concentrations in 9:1 HEPES buffer: DMSO medium; ($\lambda_{ex} = 490$ nm; slit width (E_x/E_m) = 10/10 nm; [Inset of (a,c)] plot of absorbance (A/A_o) and emission (I/I_o) changes with change in ATP concentration, respectively; Linear correlation plot of (b) A/A_o and (d) I/I_o versus the concentration of ATP to determine the lowest limit of detection.

Fig. S13a Changes in emission (5 μ M) spectra of tyrosine with gradual increase of nucleoside polyphosphates (NPPs) concentrations in 9:1 HEPES buffer: DMSO medium; ($\lambda_{ex} = 260$ nm; slit width (E_x/E_m) = 10/10 nm.

Fig. S14 Partial ¹H NMR spectra (stacked) of PDI 3 (1 mM) after incremental addition of ATP in DMSO- d_6 solution.

Fig. S15. AFM images of PDI 3 in 50% H_2O -DMSO solution.

Fig. S16 MTT assay to check the cytotoxicity of PDI 3 with statistical distribution.

Fig. S17: Fluorescence spectrum of PDI 3+ATP after regular interval of time.