Covalent RGD-Graphene-Phthalocyanine Nanocomposite for Fluorescence Imaging-Guided Dual Active/Passive Tumor Targeted Combinatorial Phototherapy

Ancheng Ouyang,^a Dongmu Zhao, ^a Xianglei Wang, ^a Wei Zhang, ^a Tianyu Jiang*^b Aiying Li,*^b Wei Liu*^a

^aInstitute of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.

^bHelmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao - 266237, P.R. China

Synthesis of SiPc-NH₂.¹ Silicon phthalocyanine dichloride (SiPcCl₂) (0.327 mM), 2-(2-aminoethoxy)ethanol (16.4 mM), K₂CO₃ (3.62 mM), and pyridine (3 mL) were dissolved in 40 mL of dry toluene. The mixture was stirred at 130°C for 15 h under nitrogen flow. After the mixture was evaporated on a rotary evaporator, it was redissolved in chloroform and filtered (150 mL). The filtrate was washed three times with deionized water. Then the crude product was recrystallized from chloroform/nhexane to obtain SiPc-NH₂ as a green solid. ¹H NMR (CD₃OD, 300 MHz): δ –1.87 (4H, t, *J* = 3.4 Hz, CH₂), 0.54 (4H, t, *J* = 3.6 Hz, CH₂), 1.72 (4H, t, *J* = 3.6 Hz, CH₂), 1.81 (4H, t, *J* = 3.8 Hz, CH₂), 8.43–8.46 (8H, m, Pc-H), 9.68–9.70 (8H, m, Pc-H). 1. J. Pan, A. Ouyang, W. Fang, G. Cheng, W. Liu, F. Wang, D. Zhao, K. Le and J. Jiang, *J Mater Chem B*, 2020, **8**, 2895-2908.