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Materials

HAuCly (99.99%), NaBH, (99.9%), cetyltrimethyl ammonium bromide (CTAB; > 99.0%),
L-ascorbic acid (>99.0%), AgNO; (>99.0%), and tetraethyl orthosilicate (TEOS; 99.9%)
were purchased from Sigma-Aldrich (St. Louis, MO, USA). NaOH (=97.0%) and isopropyl
alcohol (IPA; 99.5%) were purchased from Daejung Chemical & Metal Co., Ltd. (Shiheung,
South Korea). The human tongue squamous carcinoma (HSC-3) cell line was purchased from
Sigma-Aldrich (St. Louis, MO, USA). Dulbecco’s modified Eagle’s medium (DMEM) was
obtained from HyClone (Waltham, MA, USA). CellTiter 96® AQcus One Solution was

purchased from Promega (Madison, WI, USA).

Instruments

Transmission electron microscopy (TEM, H-7100, Hitachi, Tokyo, Japan) was used for
TEM analysis. The extinction spectra were obtained using a UV-visible spectrometer
(SCINCO, South Korea). Bright-field and dark-field images were obtained using a
microscope (Olympus 1X73, Tokyo, Japan) equipped with a dark-field condenser (NA 0.8—
0.92; Tokyo, Japan). The photothermal effects were studied using a continuous-wave (CW)
diode 808 nm NIR laser with an output power of 4.8 W (Chang-chun New Industries
Optoelectronics, China). A thermometer (YF-160A K type, Tenmars Electronics Co., Ltd.,
Taiwan) and an infrared thermal imaging camera (FLIR C2, FLIR Systems Inc., USA) were
used to measure the temperature and obtain thermal imaging, respectively. X-ray diffraction
(XRD) measurements were performed using a X-ray diffractometer (SmartLab, Rigaku,
Japan) with a Cu Ka radiation source (45 kV, 200 mA, wavelength : 1.5412 A). X-ray
photoelectron spectroscopy (XPS) measurements were performed using a X-ray
photoelectron spectroscope (X-TOOL, ULVAC-PHI, Japan) with a Ar sputter gun (> 5.0 pA,

5 kV). Raman spectra were acquired using an inverted Raman microscope (NOST, South



Korea). An Epoch™ Microplate Spectrophotometer (BioTek Inc., Winooski, USA) was used

to assess the cell viability.
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Figure S1. TEM images of CTAB-AuNRs@SiO, prepared with (a) 0.01 M, (b) 0.05 M, and

\«

50 nm

(c) 0.1 M NaOH, and (d) UV-Visible spectra. TEM images of CTAB-AuNRs@SiO, prepared
with (e) 90 pL, (f) 180 pL, and (g) 270 uL of NH4OH, and (i) UV-Visible spectra. TEM
images of the surface of CTAB-AuNRs@SiO, prepared using (i) MeOH, (j) EtOH, and (k)

IPA, and (1) UV-Visible spectra.
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Figure S2. (a) UV spectra of CTAB-AuNRs and AuNR@Si0, with 5, 10, 15, 20, 25, 30, 35,
and 40 nm Si0; shells, (b) changes of A,.x of the CTAB-AuNRs and AuNR@Si10, with 5, 10,

15, 20, 25, 30, 35, and 40 nm SiO, shells.



Figure S3. Experimental setup of the 808 nm CW laser at a power density of 1.25 W/cm?,
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Figure S4. (a) Cooling curves of DW, CTAB-AuNRs, and AuNR@Si0O,. Time constants (%)

and photothermal conversion efficiencies (1) of (b) CTAB-AuNRs and AuNR@SiO; ((¢) 5,

(d) 10, (e) 15, (f) 20, (g) 25, (h) 30, (1) 35, and (j) 40 nm) for heat transfer from the system.
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Figure S5. (a) Raman spectrum, (b) chemical structure, and (c¢) vibration modes of CTAB.!
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Figure S6. TEM images of the as-prepared (a) AuNR@Si0,; and (b) AuNR@LD-Si0O; (¢) X-

ray diffraction patterns and (d) X-ray photoelectron spectroscopy spectra of the CTAB-

AuNRs (black line), AuNR@LD-Si0, (red line), and AuNR@Si0, (green line).
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Figure S7. (a) Content of the AuNRs (OD = 1.5) in the cells measured at 780 nm and (b)
bright-field and dark-field images of cells incubated with CTAB-AuNRs and AuNR@Si0,

with defined silica shell thicknesses (5, 10, 15, 20, 25, 30, 35, and 40 nm).
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