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1. General remarks Materials and methods

The chemicals and reagents used in this study were obtained from Sigma Aldrich (India), Alfa
Aesar (India), or S.D. Fine Chemicals Ltd (India) and were used without further purification.
All the solvents used in the synthesis as well as for optical spectroscopic studies were dried
thoroughly using the reported procedures. Reagents such as 9H-fluorene, 1- bromohexane, n-
butyllithium solution 2.5 M in hexanes, tributyl borate, 1,3-Propanediol, phosphoryl chloride,
N,N-Dimethylformamide anhydrous, 4-dimethylamino benzaldehyde, 4-
(Dimethylamino)cinnamaldehyde, 4-bromotoluene, N-bromosuccinimide, triphenylamine,
4,4'-Bis(diethylamino)benzophenone, triethylamine, sodium hydride, potassium cyanide,
potassium carbonate, tetrakis (triphenylphosphine) palladium(0) Pd(PPhs)4 were purchased
from Aldrich and used without further purification. Toluene was dried over sodium and
diphenylketone. DMF was dried over phosphorus pentoxide. The other chemicals and reagents
were used as received without further purification. All the reactions were carried out in oven-
dried glassware. The progress of reactions was monitored by Thin Layer Chromatography
(TLC) while purification of crude compounds was done by column chromatography using
neutral alumina (Brokmann activity-1). NMR spectra were recorded at 500 MHz on Bruker-
400 MHz at Bruker-400 MHz. Chemical shifts are reported in & (ppm) relative to TMS ('H) or
CDCl; (*C) as internal standards. Integrals are in accordance with assignments; coupling
constants are given in Hz. All 3C spectra reported are proton- decoupled. Multiplicity is
indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet
of doublet), br s (broad singlet). FTIR spectra were recorded on a Perkin-Elmer RX-IFT-IR and
absorbencies are reported in cm™!. Mass spectra were obtained with Agilent 1100 MS series and
AXIMA CFR MALDITOF (Compact) mass spectrometers. XRD patterns were obtained on an
Empyrean X-ray diffraction instrument, and the samples of the as-synthesized crystals, ground
powders and fumed samples on glass slides were determined at room temperature. Yields refer
to quantities obtained after chromatography. UV spectra were measured on a Milton Roy
spectronic 3000 Array spectrophotometer. Photoluminescence (PL) was recorded on a Perkin-
Elmer LS 55 spectrofluorometer with a slit-width of 1 nm and 2 nm. Quantum yields (ff) of
fluorescence were obtained using quinine sulfate (0.545 in 1 N H2SOs4) as a reference standard.
Thermo gravimetric analysis (TGA) was carried on a TA TGA Q5000 under nitrogen at a
heating rate of 10 °C/min. The ground-state geometries were optimized using the density

functional (DFT) with B3LYP hybrid functional
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at the basis set level of 6-31G*. All the calculations were performed using Gaussian 03

package.

2. Experimental procedure

B ‘ B NaH (2.2 equiv.), 1 bromohexane (2.5 equiv.)
r
(- o @‘@ Br

TBAI (20mol %), No, THF, 0- 70 °C, 8 h

General/Typical Procedure: General Procedure Followed for the di-alkylation of
fluorene 2,7-dibromofluorene (5.0g, 15.4 mmol) was dissolved in dried THF solution (30 ml)
and a catalytic amount of tetra-butyl-ammonium iodide (0.046 g, 20 mol %) were added to a
flask. Then, 2.2 eq. Sodium hydride (60 %) (1.86 g, 46.2 mmol) was added into the THF
solution at 0 °C and then flask was degassed three times by applying freeze-thaw cycles refluxed
for 5 hours. BrCH,CH>CH2CH2CH2CH3 (6.112 g, 37 mmol) in was added dropwise via syringe
(degassed) and the mixture allowed to heated at 70 °C to stir for continuously 8 hours, after
which the reaction was allowed to cool for rt. The THF was evaporated and then the remaining
solid was dissolved in hexanes with passed over an alumina plug using 500 ml of hexanes which
was then evaporated to dryness and poured into crushed ice and extracted with chloroform (2
% 100 ml). The combined organic solutions were washed with saturated NaCl solution (2 % 100
ml) and distilled water (1 x 100 ml). The solvent was removed under vacuum, and the crude
was purified via column chromatography over a small pad of silica gel with 10 % ethyl acetate
in hexane as the eluent to give the desired alkylated oil product was dried and further purified
by recrystallization twice in Hexane. The synthesized 2, 7-dibromo- 9,9-dihexyl-9H-fluorene

was thoroughly characterized by 'H NMR, 13C NMR, IR and ESI- MASS.
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n-Buli (2.5 equiv.), B(OBu); (2.5 equiv.) HO
B
Ca

~or |
Ny, THF, 0-30°C, 12 h HO OH

9,9-Dihexy2,7-diboronic acid. To a solution of 2,7-dibromo-9,9-dihexylfluorene (9.84
g, 20 mmol) in dry THF (100 ml), n-BuLi (2.5 M in n-hexane, 18 ml, 45 mmol) was added
dropwise under N> atmosphere at -78°C within 20 min. After further stirring for 1 h at this
temperature, freshly distilled B(OBu); (13 ml, 48 mmol) was added. The cooling bath was
removed and stirring was continued for 12 h at room temperature. The reaction mixture was
hydrolyzed with 1 M HCI solution (150 ml) and extracted with ether (3 X 70 ml). The organic
layer was dried over anhydrous MgSO4 and the solvent was removed under reduced pressure.
The product was obtained. White solid, yield (7.68 gm, 18.2 mmol, 91%). The synthesized 9,9-
Dihexy2,7-diboronic acid was thoroughly characterized by 'H NMR, 3C NMR, IR and ESI-

MASS. M.P.179-180°C

Br @‘@ Br n-BuLi (2.5 equiv.), B{OBU); (2.5 equiv.) {?B 0‘@ B.‘?’)
o 0

No, THF, 0-30°C, 12 h

2,2'-(9,9-dihexyl-9H-fluorene-2,7-diyl)bis(1,3,2-dioxaborinane)’. To a solution of
9,9-dihexy2,7-diboronic acid (6.31 gm, 15 mmol) in toluene (50 ml) was added 1,3-
propanediol (2.04 gm, 33 mmol). The reaction mixture was refluxed at 130 °C for 24 h under
nitrogen. The mixture was poured into water and extracted with ethyl acetate (3 X 30 ml) and
dried over anhydrous MgSQOs. The solvent was removed under reduced pressure and the crude
product was recrystallized from hexane to afford the title compound. White solid, yield (5.72

gm, 76%). The synthesized 2,2'-(9,9-dihexyl-9H-fluorene-2,7-diyl)bis(1,3,2-dioxaborinane)
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was thoroughly characterized by 'H NMR, 3C NMR, IR and ESI-MASS. M. P. 121-122°C

(lit. 123-124°C).
4@% NBS (1.3 (equiv.), CCly /@/\Br KCN, DMFIH,0 (9:1), N, @A\CN
Br N2, 0-75°C, 12 h Br 18-crown-6, 0-90 °C, 116 h Br

Accordingly, a suspension of bromotoluene (1.5 g, 8.42 mmol) and N-bromo

succinimide (1.65 g, 9.27 mmol) in 50 ml of carbon tetrachloride was heated to reflux for
overnight. The resulting suspension was dissolved in CH>Cl> and washed successively with 100
ml each of saturated aqueous sodium bicarbonate, water and brine. The organic layer was
separated and dried over sodium sulphate anhydrous. Removal of solvent by rotary evaporation
gave 2.0 g of yellow oil containing p-bromobenzyl bromide. The mixture was not separated for
next step. To a stirred solution of crude p-bromobenzyl bromide (2.0 g, 7.81 mmol) in 10 ml
DMF/H>0 (9:1) was added KCN (1.52 g, 23.44 mmol) and 18-crown-6 (2.06 g, 7.81 mmol).
The reaction mixture was stirred vigorously at 90 °C for 16 h. After the completion of reaction,
mixture was cooled, quenched with 20 ml water and extracted with ethyl acetate (2 x 100 ml).
The organic layers were washed with 10 ml of water and dried over anhydrous sodium sulphate.
The solvent was removed by evaporation and resulting crude material was purified by column
chromatography on silica gel using petroleum ether: EtOAc (10:1) in a 50% isolated yield over

three steps (1 g, 4.95 mmol) as off-white solid.

NC

2 = O R’
: + NC %, N(E ]
T\—M 10 mol-% N(Et), N—~<” \m}a-
R2 \S/, R L@—Br e R’ ‘\: ]
, EtOH, 0-60 °C, 3 h R
a-d
(a-d) ab 2 (a-d, 93-97 %)

R!= H, N,N-diethylaniline: R? = Methyl, Ethy, Phenyl.

All a cyanostilbene compounds were synthesized by Knoevenagel condensation depicted in
Scheme 1. Typically, a solution of the aromatic aldehyde donor (Ar-CHO, 1.0 mmol) and active

methylene acceptor (AM, 1.0 mmol) in absolute EtOH (10 ml) was treated portion

6
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wise with triethylamine (0.1 mmol) and stirred at 60 °C for 2-3 h. After cooling to 0 °C, the
precipitate was filtered and washed with chilled EtOH. The dried crude product was purified

by column chromatography on silica gel using chloroform as an eluent afforded a pure solid.

2 eq K;C05aq.
3 mol-% Pd(PPh,),

THE,0-70 °C, N, 12 h

3ac 4 (a-d, 80-96 %)

2,2'-((9,9-dihexyl-9H-fluorene-2,7-diyl)bis(4, 1 -phenylene))bis(3-(phenyl(or)benzophenyl
acrylonitrile). Degassed THF (5 ml) and 2 M aqueous K>CO3 (4 ml) were added to the
solution of compound 3ac (0.24 g, 0.50 mmol), compound 2a-d (0.18 g, 0.25 mmol) and
Pd(PPh3)4 (15 mg, 0.013 mmol) in 8 ml THF under nitrogen atmosphere. After being refluxed
at 110 °C for 12 h, the mixture was poured into water (50 ml) and the organic layer was
separated. The aqueous layer was extracted with chloroform (3x20 ml) and the combined
organic layers were dried over anhydrous Na>SOs. The organic solvent was evaporated under
reduced pressure and the crude product was purified by silica column chromatography eluting
with petroleum ether/CH>Cl» (v:v, 2:1) to afford compound 4a-4d as a solid. The synthetic
routes for 4a-4d were shown in Scheme 1. The 2,7-dibromo-9H-fluorene, 4-
(Diphenylamino)benzaldehyde were prepared according to the reported methods. The target
molecules 4a-4d showed good solubility in common organic solvents, such as THF, DCM,

chloroform, DMF and DMSO.

3. Spectroscopic data of new compound.
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Nature: Pale Yelloe Powder, M.p: 130-132 °C, 'H NMR (400 MHz,

CDCl3) 6 9.79 (s, 1H), 7.66 (d, J = 8.8 Hz, 2H), 7.32 (dd, J = 8.4, 7.4 Hz,
4H), 7.16 (d, J= 7.3 Hz, 6H), 7.01 (d, J= 8.7 Hz, 2H). *C NMR (101 MHz,
CDCl) 6 190.45, 153.40, 146.19, 131.35, 129.78, 126.35, 125.16, 119.39,

77.44,77.13,76.81.

Nature: White Crystal, M.p: 48-51 °C, Rf (3 % ; Ethyl Acetate in Hexane):
0.79, '"H NMR (400 MHz, CDCl3) & 7.42 (dd, J = 8.8, 2.8 Hz, 3H), 7.18 —
7.12 (m, 3H), 3.66 (s, 1H). 3C NMR (101 MHz, CDCls) & 132.18, 129.75,

129.26, 121.99, 117.71, 23.13.

Nature: White Powder, M.p: 68 — 71 °C. Rf (30% EtOAc-Hexane): 0.43, 'H
NMR (400 MHz, CDCl3) 7.28 — 7.23 (m, 6H), 3.06 (s, 3H), 2.98 (s, 3H),
2.16 — 1.97 (m, 2H), 1.45 — 1.33 (m, 2H), 1.27 (d, J = 9.6 Hz, 11H), 1.11
(dd, J=16.9,10.0 Hz, 2H), 0.88 (t, /= 6.7 Hz, 3H), 0.76 (t, J = 6.6 Hz,

3H). BC NMR (101 MHz, CDCls) & 152.58, 139.09, 130.18, 126.21,

121.51, 121.13, 55.71, 40.21, 31.46, 29.59, 23.67, 22.58, 14.00.

Nature: White Powder, M.p: 122-125 °C, Rf (3% Ethyl Acetate in -Hexane):
0.63, '"H NMR (400 MHz, CDCl3) 8 8.51 — 7.48 (m, 6H), 4.19 (t,J= 5.3 Hz,
8H), 2.07 (dd, J =10.5, 5.2 Hz, 4H), 1.98 (dd, J=9.9, 6.4 Hz, 4H), 1.03
(ddd, J =23.6, 11.6, 6.5 Hz, 12H), 0.74 (t, J = 7.1 Hz, 6H), 0.53 (dd, J =
14.8, 7.4 Hz, 4H).13C NMR (101 MHz, CDCls) 6 150.31, 143.55, 132.36,
127.88, 119.18, 77.38, 77.06, 76.74, 62.03, 54.90, 40.41, 31.58, 29.82,

27.47,23.74,22.67, 14.04.
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Nature: Yellow solid, M.p: 180-182 °C, '"H NMR (400 MHz, CDCls) & 7.83
(d, J=8.9 Hz, 1H), 7.54 — 7.43 (m, 2H), 7.36 (s, 1H), 6.70 (d, J = 9.0 Hz,
1H), 3.05 (s, 3H). '3C NMR (101 MHz, CDCl3) 8 151.9, 142.8, 134.6,

132.0, 131.5,126.9, 121.8, 121.3, 119.1, 111.6, 103.2, 40.0.

\T\,/\
N
I
S _CN
Br
7
SN
)
~
NC

Br

Nature: Dark Yellow solid, M.p: 190-192 °C, Rf (3% Ethyl Acetate in
Hexane): 0.75, 'TH NMR (400 MHz, CDCl3) & 7.40 (d, J = 8.7 Hz, 2H), 7.33
(d, J= 8.8 Hz, 3H), 7.26 (d, J = 11.1 Hz, 1H), 7.06 (dd, J = 15.1, 11.3 Hz,
1H), 6.85 (d, J = 15.1 Hz, 1H), 6.57 (d, J = 8.8 Hz, 2H), 2.93 (s, 6H). *C
NMR (101 MHz, CDCl3) & 151.4, 143.3, 143.0, 133.0, 132.1, 129.4, 126.7,

123.6,122.2,120.4, 117.4, 112.0, 107.9, 40.2.

Nature: Yellow Powder, M.p: 116-118 °C, Rf (30 % ; Ethyl Acetate in
Hexane): 0.86, 'H NMR (400 MHz, CDCl3); 6 7.25 (dd, J = 15.3, 8.7 Hz,
2H), 7.10 (d, J = 8.5 Hz, 1H), 6.78 (d, J = 8.8 Hz, 1H), 6.55 (d, /= 8.9 Hz,
1H), 6.35 (d, J= 8.9 Hz, 1H), 3.32 (q, J = 7.0 Hz, 2H), 3.25 (q, /= 7.0 Hz,
2H), 1.12 (t,J = 7.0 Hz, 3H), 1.07 (t, /= 7.0 Hz, 3H). 3C NMR (101 MHz,
CDCI3); & 159.5, 149.2, 148.5, 136.2, 133.4, 132.5, 131.4, 131.2, 126.9,

125.2,122.4,120.5, 110.4, 110.4, 101.7, 44.4, 44.3, 12.9, 12.6.

Nature: Yellow Powder, M.p: 118-120 °C, Rf (3 % ; Ethyl Acetate in
Hexane): 0.87, 'H NMR (400 MHz, CDCl3) 4 7.64 (d, J = 8.7 Hz, 1H), 7.38
(q, J = 8.7 Hz, 3H), 7.24 — 7.07 (m, 5H), 7.06 — 6.81 (m, 10H). 3C NMR

(101 MHz, CDCI3) 6 149.1, 145.4, 140.9, 133.0, 131.0, 129.7, 128.5, 128.5,
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128.1, 126.1, 124.7, 123.5, 123.1, 119.6, 105.2.

Nature: Yellow powder, M.p: 309-311 °C, Rf (30% EtOAc-Hexane): 0.83,
FTIR (CH2Cl2) vmax: 3286, 2960, 2933, 2873, 1714, 1596, 1556, 1460,
1376, 1263, 1156, 1059, 961, 826, 758, cm*'; 'H NMR (400 MHz, CDCl;3)
0 7.89 (t, J = 8.5 Hz, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.77 — 7.59 (m, 10H),
7.55 (td, J = 7.3, 1.3 Hz, 4H), 7.46 (ddd, J = 8.4, 5.2, 2.2 Hz, 7TH), 7.28 —
7.23 (m, 1H), 3.06 (s, 3H), 2.98 (s, 3H), 2.16 — 1.97 (m, 2H), 1.45 — 1.33
(m, 2H), 1.27 (d, J=9.6 Hz, 14H), 1.11 (dd, J = 16.9, 10.0 Hz, 2H), 0.88 (t,
J = 6.7 Hz, 3H), 0.76 (t, J = 6.6 Hz, 3H). *C NMR (101 MHz, CDCls) &
151.9, 151.7, 132.9, 132.2, 132.1, 132.0, 132.0, 131.8, 131.4, 129.4, 128.6,
128.5, 127.5, 125.8, 125.2, 121.3, 120.2, 116.0, 114.1, 111.7, 111.6, 111.3,
55.4, 40.1, 40.0, 33.8, 31.9, 29.7, 22.7, 22.6, 14.1, 14.0. MALDI-TOF

Mass: Calcd. for Cs3HesN4 Exact Mass: 826.17; Found 826.027 (M™).

Nature: Dark Orange Powder, M.p: 283-285 °C, Rf (30% EtOAc-Hexane):

0.53, FTIR (CH2Cl2) vmax: 3168, 2990, 2853, 1800, 1556, 1460, 1376,
1156, 961, 826 cm!'; 'TH NMR (400 MHz, CDCl3) & 7.40 (d, J = 8.7 Hz,
2H), 7.33 (d, J= 8.8 Hz, 3H), 7.26 (d, /= 11.1 Hz, 1H), 7.06 (dd, J = 15.1,
11.3 Hz, 1H), 6.85 (d, J = 15.1 Hz, 1H), 6.57 (d, J = 8.8 Hz, 2H), 2.93 (s,
6H). 13C NMR (101 MHz, CDCl3) & 151.4, 143.3, 143.0, 133.0, 132.1,
129.4,126.7, 123.6, 122.2,120.4, 117.4, 112.0, 107.9, 40.2. MALDI-TOF

Mass: Calcd. for CssHesN4 Exact Mass: 878.5287; Found 878.785 (M+1).

10
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Nature: Yellowish-green, Powder, M.p: 250-252 °C, Rf (30% EtOAc-
Hexane): 0.63, FTIR (CH2CL) vmax: 3280, 2960, 2933, 2873, 1910, 1556,
1460, 1263, 1156, 1005, 858 cm’!; 'TH NMR (400 MHz, CDCls) 8 7.70 (dd,
J=15.4,5.7Hz, 1H), 7.67 - 7.61 (m, 1H), 7.51 (t,J="7.1 Hz, 1H), 7.43 (d,
J=29.7Hz, 1H), 7.19 (dt, J = 14.6, 6.6 Hz, 2H), 7.11 — 6.93 (m, 3H), 2.08
—1.87 (m, 1H), 1.31 (d, J=17.0 Hz, 1H), 1.24 — 1.09 (m, 2H), 0.98 (s, 3H),
0.83 —0.72 (m, 1H), 0.66 (d, J= 6.8 Hz, 3H). *C NMR (101 MHz, CDCl3)
0 150.9, 149.0, 145.6, 140.7, 140.2, 139.4, 138.0, 132.8, 130.2, 129.7,
128.6, 128.5, 126.6, 125.5, 125.1, 125.0, 124.7, 123.4, 120.3, 119.9, 119.2,
117.7, 106.3, 54.4, 39.4, 30.4, 28.7, 28.6, 21.5, 13.0. MALDI-TOF Mass:

Calcd. for C79H70N4 Exact Mass: 1074.5600; Found 1074.982 (M™).

Nature: Yellow Powder, M.p: 400-402 °C, Rf (40% EtOAc-Hexane): 0.53.
FTIR (CH2Cl2) Vimax: 3096, 2958, 2873, 1919, 1596, 1460, 1263, 1156, 961,
626 cm'; 'TH NMR (400 MHz, CDCI13) 6 7.74 (t, J = 9.5 Hz, 2H), 7.70 —
7.63 (m, 4H), 7.54 (dt, J= 6.7, 4.6 Hz, 4H), 7.43 (ddd, J=22.8, 13.7, 5.7
Hz, 7H), 6.96 (d, J = 8.8 Hz, 1H), 6.65 (d, J = 8.9 Hz, 2H), 6.46 (d, /= 8.9
Hz, 1H), 3.52 - 3.28 (m, 7H), 2.02 (dd, J = 8.1, 5.8 Hz, 1H), 1.92 — 1.45 (m,
| 1H), 1.34 — 0.93 (m, 17H), 0.92 — 0.81 (m, 1H), 0.74 (t, J = 6.9 Hz, 3H). 13C

NMR (101 MHz, CDCl3) & 151.7, 150.3, 149.1, 148.4, 140.1, 139.6, 139.4,

133.5, 133.0, 132.5, 132.2, 132.1, 132.0, 132.0, 130.0, 128.6, 128.5, 126.8,
125.6,122.7,121.1, 120.0, 110.5, 110.4, 110.0, 55.3, 44.5, 44.3, 40.5, 34.7,
34.5,29.7,26.9,22.6, 14.0,12.7, 12.6. MALDI-TOF Mass: Calcd. for

Cs3HosNg Exact Mass: 1176.7696; Found 1177.114 (M+1).

11
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4.0 Scanned copy of spectra ('H, 13C NMR, DEPT-135, FTIR, HRMS and ESI-mass)
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Figure 4. 3. DEPT-135 NMR spectrum of compound 1¢
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Figure 4. 11. 3C NMR spectrum of compound 3a
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Figure 4. 12. DEPT-135 NMR spectrum of compound 3a
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Figure 4. 13. "TH NMR spectrum of compound 3b
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Figure 4. 14. 13C NMR spectrum of compound 3b
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Figure 4. 15. DEPT-135 NMR spectrum of compound 3b
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Figure 4. 16. 'TH NMR spectrum of compound 3ba
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Figure 4. 17. 13C NMR spectrum of compound 3ba
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Figure 4. 18. DEPT-135 NMR spectrum of compound 3ba
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Figure 4. 19. "TH NMR spectrum of compound 3bc
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Figure 4. 20. 13C NMR spectrum of compound 3be
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Figure 4. 21. DEPT-135 NMR spectrum of compound 3bc
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Figure 4. 22. 'TH NMR spectrum of compound 2a
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Figure 4. 23. 13C NMR spectrum of compound 2a
Z B & g
g I 3 g
| N |
\\M
' CN
Br
]
=
IED 1;0 IGIHZI JJIEI 1.2‘0 i 5 10 lilfIIZI 9‘0 SIIJ ?ID !'alﬂ EIEI lQIIZI 3‘0 2‘0 LIEI !I:
f1 {ppm)

Figure 4. 24. DEPT-135 NMR spectrum of compound 2a
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Figure 4. 25. "TH NMR spectrum of compound 2b
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Figure 4. 26. 13C NMR spectrum of compound 2b
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Figure 4. 27. DEPT-135 NMR spectrum of compound 2b
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Figure 4. 28. 'TH NMR spectrum of compound 2¢
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Figure 4. 29. DEPT-135 NMR spectrum of compound 2¢
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Figure 4. 30. DEPT-135 NMR spectrum of compound 2¢
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Figure 4. 31. "H NMR spectrum of compound 2d
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Figure 4. 32. 13C NMR spectrum of compound 2d
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Figure 4. 33. DEPT-135 NMR spectrum of compound 2d
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Figure 4. 35. DEPT-135 NMR spectrum of compound 4a
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Figure 4. 36. DEPT-135 NMR spectrum of compound 4a
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Figure 4. 38. 'TH-NMR spectrum of compound 4b
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Figure 4. 39. 13C NMR spectrum of compound 4b
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Figure 4. 40. DEPT-135 NMR spectrum of compound 4b
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Figure 4. 41. MALDI-TOF Mass Spectrum of compound 4b

32




Supporting Information

REREEREaNERARERTRIEzaCaly 588 ARCTHRERRE@E
R 25 & R R
| ||
ry - III ‘U” |
|H-I WL |‘ |r'x|”- | \“J il
| lW‘\J ) |

T T T T T T T T T T T T T T T T T T T T T T T T
10 105 100 95 9.0 B.5 8o 25 0 6.5 6.0 55 50 45 4.0 35 30 25 2.0 1.5 10 05 LXi] 0.5
f1 {ppm)

Figure 4. 42. "H NMR spectrum of compound 4¢
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Figure 4. 43. 13C NMR spectrum of compound 4¢
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Figure 4. 47. 13C NMR spectrum of compound 4d
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Figure 4. 48. DEPT-135 spectrum of compound 4d
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Figure 4. 49. MALDI-TOF Mass Spectrum of compound 4d
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5.0 Absorption and emission spectra of stilbenes (4a-4d) in homogeneous solvents
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Fig 5. 1: Normalised Absorption spectra of stilbenes (4a-4d) in different polarity of solvents

(10 uM)
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Fig 5. 2: Absorption spectra of (10 uM) spectra of 4a-4d in THF/water mixtures with various
water fractions from top to bottom, f w = 0 to 90%
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Fig 5. 3: Absorption spectra of (10 uM) spectra of 4a-4d in THF/water mixtures with various
water fractions, f'w = 0 and 90 from top.
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Fig 5. 4: Photoluminescence (PL) normalized spectra of (10 uM) in THF solvent (left) and solid
state emission (right) of 4a-4d. Inset shows the visual fluorescence change in THF solvent of
4a-4d. The photos were taken under a handheld UV (365 nm) lamp as soon as the substances

were added.
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Fig 5. 5: Photoluminescence (PL) normalized spectra of 4a-4d in ground processes and inset
shows the visual fluorescence change of 4a-4d. The photos were taken under a handheld UV
(365 nm) lamp as soon as the substances were added.
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Table. S2. Photo physical spectral studies of 10 mM 4a-4d samples different solvents

(excitation wavelength is 390 nm)

Aabs (Nm) | Aem (nm) | Stokes shift (nm) | Quantum yields®
Cyclohexane | 423 495 72 0.52
Toluene 424 517 93 0.48
DCM 419 528 109 0.46
THF 416 534 118 0.12
ACN 412 542 130 0.08
DMSO 437 550 113 0.078
Pure water” | 426 559 133 0.015
Buffer® ¢ 422 561 136 0.012
Aabs (nmM) | Aem (NM) Stokes shift (nm) |Quantum yields?
Cyclohexane 400 485 85 0.62
Toluene 407 496 89 0.55
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DCM 407 510 103 0.57
THF 405 520 115 0.17
ACN 406 525 119 0.05
DMSO 423 540 117 0.051
Pure water® 419 552 133 0.011
Buffer® ¢ 420 554 134 0.015

Aabs (NM) | Aem (NM) Stokes shift (nm) [Quantum yields?®
Cyclohexane | 406 490 84 0.59
Toluene 408 505 97 0.50
DCM 407 530 123 0.53
THF 404 550 146 0.20
ACN 400 556 156 0.11
DMSO 405 570 165 0.081
Pure water® | 401 576 175 0.042
Buffer® ¢ 402 581 179 0.030
Aabs (Nm) | Aem (NM) Stokes shift (nm) |Quantum yields®
Cyclohexane | 402 485 83 0.59
Toluene 403 505 102 0.47
DCM 407 530 123 0.49
THF 409 560 151 0.18
ACN 405 572 167 0.10
DMSO 418 590 172 0.075
Pure water® | 412 596 184 0.024
Buffer® ¢ 415 592 177 0.035
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a) Quantum yields are calculated using Coumarine 153 (EtOH, ®r = 0.38) solution as
reference and using the following formula ® = ®F x (I/Ir) X (Ar/A) x (n¥ nr?) where
® = quantum yield, I = intensity of emission, A = absorbance at Aex = 400 nm, n =
refractive index of solvents; The quantum yields of compounds are determined in a
different solvent system and the standard error is equal to the standard deviation of three
independent measurements.

b) Compounds are not soluble in pure water and buffer solution, so we added minimum
amount organic solvent (DMSO) was used.

¢ HEPES buffer was used and maintained the pH = 7.4
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Figure 5.7. The fluorescence spectra of compounds 4a (top left), 4b (top right), 4¢
(bottom left), 4d (bottom right) with different pHs.
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6. Dynamic light scattering (DLS) study
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Fig. 6.1 Particle size distribution of BTPEPBI-NP50 in water studied via laser light scattering. Inset: HR-TEM
image of BTPEPBI-NP50.

7.0 Thermogravimetric analysis (TGA)

The thermal properties of all compounds are investigated by thermogravimetric analysis
(TGA). Excellent thermal stability is highly profound for the optoelectronic applications for
organic molecular conjugates. Thermal stability is also one of the important factors for the
practical application of organic electronic materials. The thermal properties of 4a-4d were
measured by TGA in N, flow with a heating rate of 10 °C min™!. To check the thermal stability
of fluorine-based a-cyano stilbene 4a-4d, TGA was performed (Figure 1). The thermal
decomposition temperatures (Td) corresponding to 5% weight loss under nitrogen atmosphere
at 150 °C - 210 °C under nitrogen and are 311 °C, 283 °C, 252 °C, and 402 °C for 4a, 4b, 4c,
and 4d, respectively and that indicating these molecules possessed moderate thermal stability
for the application of organic devices and other application. The glass transition temperature of
4a-4d shows in the range of 243-366°C. The thermal stability of the fluorine-based o-
cyanostilbene 4a-4d follows the order 4d > 4a > 4b > 4c¢. This reveals that the thermal stability

of the fluorine-based - cyanostilbene 4a-4d decreases with the
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bulkiness of substituent on a- cyanostilbene unit. This finding indicates the molecules having

good thermal and morphological stability and the thermal curves were showed in figures 8.1.
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Fig. 7.1. Thermogravimetric analysis (TGA) of synthesised organic compounds: (a)

compound 4b (red) compound 4d (violet), compound 4¢ (blue) compound 4a (green).
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Fig. 7.2 PXRD patterns of 4a-4d Pristine (back line), Ground (red line), and Fumed (blue line)

8. Application for Live Cancer Cell Imaging
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Human Lung Carcinoma cells (A549) cells was procured from National Centre for Cell
Science (NCCS), Pune, India. The cells were cultured in DMEM medium containing penicillin,
streptomycin and amphotericin B (100 U mL!) and 10% heat-inactivated FBS and cells were
maintained in a humidified incubator at 37 °C with 5% CO- for the application of Live Cancer
Cell Imaging. For live cancer cell imaging, among the all, 4d was investigated using A549
(lung cancer cells), due to its high quantum yield under aggregates state. Compound 4d (10
uM) was added to the tested cell cultures and incubated at 37 °C for 30 min. Later, the cells
were stained with nuclear staining dye 4',6-diamidino-2-phenylindole (DAPI) (2 uM) for
another 20 min. To our delight, 4d effectively entered the cell membranes of the tested cancer
cells, labeled with an intense FR luminescence when compared to the fluorescence images of
the cells before and after the treatment with 4d (Figure 8.1). This showed the potential of
compound 4d in intracellular imaging in the tested cancer cells. It is noteworthy that during the
cell imaging experiment, the tested cells were healthy and unharmed and displayed an adherent
morphology. From this study, we conclude that compound 4d could be used for live cancer cell

imaging (Supporting Information).

8.1 Cell Viability Assay

We studied the cytotoxicity of the synthesized compound 4d, which is an important factor for
cellimaging applications (Figure 6). The MTS assay method was applied to test the cytotoxicity
of compound 4d by adding 100-200 uM for 24 h of the compound in the cancer cell culture.
The observed cytotoxicity is very nominal for compound 4d against A549 cells, because of the
excellent biocompatibility, non-toxic to the cells up to 200 uM of the synthesized compound

4d could be utilized as a fluorescent bioprobe in live cancer cell imaging.
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Fig. 8.1 Live cell imaging of compound 4d in A549 cell. (A) Row 1 (al-a3): A549 cells treated with 25 uM X
for 30 min. DAPI stained blue fluorescence images; column 2 (a2 and b2): green fluorescence images; column 3
(a3 and b3): merging of the blue and green fluorescence images. Scale bar = 5 um. Excitation and emission
wavelength: 405 nm and 410-460 nm for blue fluorescence images; 488 nm and 490-561 nm for green fluorescence
images.
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Fig. 8. 2. Cell viability of A549 cells upon treatment with DAPI stained at different
concentrations in dark at a power density of 0.10 W c¢cm? for 4 min and further incubation in
fresh medium for 24 h.
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Figure 8.3. Comparison of ROS fluorescence intensity with 4a (left) and 4b (right). The
observations clearly showed that in the presence of ROS, the fluorescence of 4a or 4b altered
only slightly, demonstrating that the compounds are stable in the presence of ROS.
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Fig. 8. 4. Comparison of ROS fluorescence intensity with 4c¢ (left) and 4d (right). The
observations clearly showed that in the presence of ROS, the fluorescence of 4¢ or 4d altered
only slightly, demonstrating that the compounds are stable in the presence of ROS.

48




Supporting Information

Relative fluorescence intensity (A. U.)
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Fig. 8. 5. Photo stability of 4a, 4b, 4¢ and 4d.
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