Electronic Supporting Information

## Detection of subcellular nitric oxide in the mitochondria by a pyrylium probe: assays in cell cultures and peripheral blood

Ignacio Muñoz Resta,<sup>a</sup> Begoña Bedrina,<sup>a</sup> Elena Martínez-Planes,<sup>b</sup> Alfredo Minguela<sup>b</sup> and Francisco Galindo<sup>\*a</sup>

- a. Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. V.
  Sos Baynat s/n, 12071, Castellón, Spain. E-mail: <u>francisco.galindo@uji.es</u>
- b. Servicio de Inmunología, Hospital Universitario Virgen de la Arrixaca, El Palmar, 30120, Murcia, Spain.

## Index

| Fluorescence measurements                                        | 3  |
|------------------------------------------------------------------|----|
| Preparation of NO (g)                                            | 3  |
| Selectivity test                                                 | 3  |
| Cell cultures and treatments                                     | 4  |
| Effects on Cell Growth/Viability                                 | 4  |
| Confocal microscopy in HT29 cells                                | 4  |
| Flow Cytometry Analysis of NO in HT29 cells                      | 5  |
| Confocal microscopy in RAW 264.7 cells                           | 5  |
| Flow Cytometry Analysis of NO in RAW 264.7 cells                 | 6  |
| Flow Cytometry Analysis of NO in peripheral blood leukocytes     | 6  |
| Spectroscopic data of 2 and its reaction product with NO         | 7  |
| Synthetic route for compounds 2-4                                | 8  |
| Spectroscopic response to NO of probe 2                          | 9  |
| pH response of <b>2</b> +NO and <b>2</b>                         | 10 |
| HRMS of <b>2</b> +NO and model compound <b>1</b>                 | 11 |
| Comparison of absorption and emission spectra of 2+NO and 1      | 11 |
| Spectroscopic response to NO of probes 3 and 4                   | 12 |
| Mean fluorescence intensity of 2-stained cells by flow cytometry | 13 |
| Cell viability assay of probe 2                                  | 14 |
| Spectroscopic data of compounds 2-4                              | 15 |
| References                                                       | 21 |

**Fluorescence measurements**. 10  $\mu$ M solutions of **2** in PBS 10 mM, pH 7.4 (20 % DMF as a cosolvent) were prepared. For the kinetic analysis, different equivalents of DEA NONOate were added, and the absorption spectra/emission spectra/maximum fluorescence intensity was measured over time. DEA NONOate is a commercial NO donor with a half-life of 16 minutes at 22-25 °C in 0.1 M phosphate buffer (pH 7.4). It liberates 1.5 moles of NO per mole of the parent compound. For the concentration dependence study, different aliquots (3 ml each) of 10  $\mu$ M solutions of **2** were titrated by adding increasing volumes of 12.25 mM DEA/NONOate stock solution (in NaOH 10 mM). The fluorescence spectra were measured after 20 minutes of reaction at the corresponding excitation wavelength (480 nm).

**Preparation of NO** (g). Gaseous nitric oxide (NO) was synthesized by a reaction between KI (1 M) and NaNO<sub>2</sub> (1 M) catalyzed by acid, according to the following reaction:

$$2 \text{ NO}_2^-(aq) + 2 \text{ I}^-(aq) + 4 \text{ H}^+(aq) \rightarrow 2 \text{ NO}(g) + \text{ I}_2(s) + 2 \text{ H}_2O(l)$$

Selectivity test. Different analytes (final concentration: 500  $\mu$ M): NO, CIO<sup>-</sup>, H<sub>2</sub>O<sub>2</sub>, NO<sub>2</sub><sup>-</sup> NO<sub>3</sub><sup>-</sup>, O<sub>2</sub><sup>-</sup>, HO<sup>-</sup>, <sup>1</sup>O<sub>2</sub>, ascorbic acid (AA), dehydroascorbic acid (DHA), and ONOO<sup>-</sup> were added to 10  $\mu$ M solutions of **2** in PBS 10 mM, pH 7.4 (20 % DMF as a cosolvent). The resulting solutions were kept at ambient temperature for 20 min and then the emission spectra were recorded ( $\lambda_{exc} = 480$  nm). Aqueous solutions of NaNO<sub>2</sub>, NaNO<sub>3</sub>, AA and NaClO were prepared freshly and used as sources of NO<sub>2</sub><sup>-</sup>, NO<sub>3</sub><sup>-</sup>, AA and ClO<sup>-</sup>, respectively. Dimethyl sulfoxide solutions of KO<sub>2</sub> and DHA were used as sources of O<sub>2</sub><sup>-</sup> and DHA. H<sub>2</sub>O<sub>2</sub> was diluted promptly from 35 % wt solution. Hydroxyl radicals were generated by the reaction of Fe<sup>2+</sup> with H<sub>2</sub>O<sub>2</sub> (molar ratio of Fe<sup>2+</sup> to H<sub>2</sub>O<sub>2</sub> is 1:10).<sup>1</sup> Nitric oxide (NO) was generated from DEA/NONOate (stock solution 12.25 mM in 10 mM NaOH). Singlet oxygen (<sup>1</sup>O<sub>2</sub>) was generated from ClO<sup>-</sup> and H<sub>2</sub>O<sub>2</sub>.<sup>2</sup> ONOO<sup>-</sup> was prepared by reaction of NO<sub>2</sub><sup>-</sup> and H<sub>2</sub>O<sub>2</sub>.<sup>3</sup>

**Cell cultures and treatments.** HT29 human colon cancer cell line and RAW 264.7 (ATCC® TIB-71<sup>TM</sup>) murine macrophage cell line were employed to test probe **2** in an *in vitro* setting. Cell cultures were maintained in DMEM high glucose supplemented with 10 % inactivated fetal bovine serum, 2 mM L-glutamine, 1% P/E (penicillin and streptomycin) at 37 °C, in a cell culture incubator with a humidified 5 %  $CO_2/95$  % air atmosphere. Cell cultures were used for experiments at passage number lower than 20.

Effects on Cell Growth/Viability. The cytotoxic effects of probe 2 were assessed using the MTT assay in RAW 264.7 cells. Briefly, cells were grown in microplates (tissue culture grade, 96 wells, flat bottom) in a final volume of 100  $\mu$ L culture medium per well in a humidified atmosphere (37 °C, 5 % CO<sub>2</sub>/95 % air), before the incubation with different concentrations of 2, from 0 to 1000  $\mu$ M (n = 3). After the incubation period (48 h), 10  $\mu$ l of the MTT labeling reagent (final concentration 0.5 mg/ml) was added to each well and incubated for 3 h in a humidified atmosphere (37 °C, 5% CO<sub>2</sub>). The purple formazan crystals formed were then dissolved by the addition of 100  $\mu$ L of DMSO into each well. Using a microplate reader (Multiskan FC, Termo Scientific), the absorbance of the samples at 550 nm was measured.

**Visualization of Exogenous NO in HT29 living cells.** 10 mM stock solution of **2** in DMSO was prepared. HT29 cells were seeded ( $5 \times 10^4$  cells/mL) in a sterile  $\mu$ -Slide 4-well-chamber slide (Ibidi, Inycom, Madrid, Spain). After 24 h incubation ( $37 \,^{\circ}$ C in a 5 % CO<sub>2</sub>/95 % air), the culture medium was removed and freshly prepared serum-free medium with **2** (10  $\mu$ M, 0.1% DMSO as the cosolvent) was added. Cells were then incubated at 37 °C for 30 minutes (5 minutes before this time end, 0.01 mg/ml Hoechst 33342 was added to stain nuclei). For the positive control group, **2**-loaded cells were then supplied with NO (100  $\mu$ M SNAP as the donor) in PBS for another 60 min. In all experiments, the cells were washed with PBS ( $3 \times 0.5$  mL/well) before the fluorescence imaging using a

confocal microscope. In colocalization analysis, **2** was coincubated with Mitotracker Green FM (ThermoFisher M7514, 75 nM).

Flow Cytometry Analysis of NO in HT29 cells. HT29 cells were seeded into a six-well plate at the density of  $1 \times 10^5$  cells/ml. After 24 h incubation (37 °C in a 5 % CO<sub>2</sub>/95 % air), the culture medium was removed and freshly prepared serum-free medium with 2 (10  $\mu$ M, 0.1% DMSO as the cosolvent) was added. Cells were then incubated at 37 °C for 30 minutes, washed with PBS (3 × 1 mL/well), and further incubated with SNAP (100  $\mu$ M), for 1 hour. The well-containing only cells was used as the blank group, and the group of 2-loaded cells was employed as control. Before flow cytometry analysis, cells were collected and washed with PBS (3 × 1 mL/tube or Eppendorf). All the measurements were performed three times.

Visualization of Endogenous NO in Raw 264.7 macrophage cells. 10 mM stock solution of 2 in DMSO was prepared. RAW 264.7 macrophage cells were seeded ( $5 \times 10^4$  cells/ mL) in a sterile  $\mu$ -Slide 4-well-chamber slide (Ibidi, Inycom, Madrid, Spain). After 24 h incubation (37 °C in a 5% CO<sub>2</sub>/95% air), the culture medium was removed and fresh serum-free medium containing 20 µg/mL of LPS was added. After incubation at 37 °C overnight, LPS activated RAW cells were incubated with fresh serum-free culture medium containing 2 (10 µM, 0.1% DMSO as the cosolvent) for another 30 minutes (5 minutes before this time end, 0.01 mg/ml Hoechst 33342 was added to stain nuclei). The cells were washed with PBS ( $3 \times 0.5$  mL/well) before the fluorescence imaging using a confocal microscope. In a control experiment, the cells were treated with 20 µg/mL LPS and 50 µM iNOS inhibitor L-NMMA overnight and then incubated with probe 2 (10 µM, 0.1% DMSO as the cosolvent) for 30 min (5 minutes before this time end, 0.01 mg/ml Hoechst 33342 was added to stain probe 2 (10 µM, 0.1% DMSO as the cosolvent) for 30 min (5 minutes before this time end, 0.01 mg/ml Hoechst 33342 was added to stain probe 2 (10 µM, 0.1% DMSO as the cosolvent) for 30 min (5 minutes before this time end, 0.01 mg/ml Hoechst 33342 was added to stain probe 2 (10 µM, 0.1% DMSO as the cosolvent) for 30 min (5 minutes before this time end, 0.01 mg/ml Hoechst 33342 was added to stain probe 2 (10 µM, 0.1% DMSO as the cosolvent) for 30 min (5 minutes before this time end, 0.01 mg/ml Hoechst 33342 was added to stain probe 2 (10 µM, 0.1% DMSO as the cosolvent) for 30 min (5 minutes before this time end, 0.01 mg/ml Hoechst 33342 was added to stain probe 2 (10 µM, 0.1% DMSO as the cosolvent) for 30 min (5 minutes before this time end, 0.01 mg/ml Hoechst 33342 was added to stain probe).

Flow Cytometry Analysis of NO in inflamed macrophage cells. RAW 264.7 cells were seeded into a six-well plate at the density of  $1 \times 10^5$  cells/ml. After 24 h incubation (37 °C in a 5 % CO<sub>2</sub>/95 % air), the culture medium was removed and freshly prepared serum-free medium with LPS (20 µg/mL) was added. Cells were then incubated at 37 °C overnight, washed with PBS (3 × 1 mL/well), and further incubated with 2 (10 µM, 0.1% DMSO as the cosolvent), for 30 minutes. 2-stained cells were washed with PBS (3 × 1 mL/well) and removed from the plate using a cell scraper. The well-containing cells only was used as the blank group, and the group of 2-loaded cells was employed as control. Before flow cytometry analysis, cells were washed with PBS (3 × 1 mL/tube). In a control experiment, the cells were treated with 20 µg/mL LPS and 50 µM iNOS inhibitor L-NMMA overnight and then incubated with probe 2 (10 µM, 0.1% DMSO as the cosolvent) for 30 min. All the measurements were performed three times.

Intracellular nitric oxide (NO) analysis by flow cytometry in peripheral blood leukocytes. Whole heparin anti-coagulated peripheral blood diluted 1:1 in 100  $\mu$ l of RPMI-1640 medium (Gibco, Thermo Fisher Scientific) or RPMI + Lipopolysaccharide 1  $\mu$ g/ml (LPS, Sigma-Aldrich) were incubated in a U-button 96-well plate for 0 (ex-vivo), 24 or 48 hours in a cell incubator at 37 °C and 5% CO<sub>2</sub>. Blood cells were labelled with CD8-BV605 (SK1, Becton-Dickinson, BD), CD16-V450 (3G8, BD), CD45-APC-H7 (2D1, BD), CD56-BV711 (NCAM16.2, BD), CD64-APC (10.1, BD), and HLA-DR-BV786 (L243, Biolegend) monoclonal antibodies during 5 min at 37 °C and then transferred to a flow cytometry tube containing 1.5 ml pre-warmed RPIM with 10  $\mu$ M **2** and immediately acquired during 30 minutes at a low flow rate (time was recorded). During the acquisition, the tube was incubated in a 37 °C water bath protected from light. The level of NO was evaluated as mean fluorescence intensity (MFI) of **2** using FACSLyric and DIVA 9.0 software (BD). Photomultiplier voltages were previously adjusted using CS&T beads (BD). Double thresholds in FSC (Forward side scatter) and CD45 APC-H7 were set to differentiate leukocytes (CD45+) from red blood cells and platelets (CD45-). The MFI of 2 was evaluated in the PE-channel (586/42 nm) excited by the blue laser (488 nm) and in the V500-channel (528/45) excited by the violet laser (405 nm). Staining with other 488 nm excited fluorochromes was ruled out to avoid compensation with the PE-channel.

| <b>F</b> | Sorvent                 | λ <sub>abs</sub> (log ε)<br>(nm) |            | λ <sub>em</sub><br>(nm) | фғ   |
|----------|-------------------------|----------------------------------|------------|-------------------------|------|
| 2        | PBS-DMF 8:2<br>pH = 7.4 |                                  | 485 (5.43) | -                       | -    |
| 2 + NO   | PBS-DMF 8:2<br>pH = 7.4 | 420 -s-                          | 485 (5.36) | 585                     | 0.01 |

Table S1. Spectroscopic data of 2 and its reaction product with NO.

s = shoulder



Scheme S1. Synthetic route for compounds 2-4.



Figure S1. Evolution over time of the absorption (up) and emission (down) spectra of 10  $\mu$ M solutions of 2 in PBS 10 mM (pH 7.4, 20 % DMF as a cosolvent) with 50 equivalents of DEA NONOate.  $\lambda_{exc}$  was set at 480 nm.



**Figure S2.** Evolution over time of the fluorescence intensity at 585 nm of 10  $\mu$ M solutions of **2** in PBS 10 mM (pH 7.4, 20 % DMF as a cosolvent) after the addition of different equivalents of NO.  $\lambda_{exc}$  was set at 480 nm.



Figure S3. pH response of 2 + NO (50 equivalents, red dots) and 2 (black dots).



Figure S4. High resolution mass spectra of 2 after the reaction with an excess of gaseous NO (top) and its deamination product, model compound 1 (bottom).



**Figure S5**. Normalized absorption and emission spectra of compound 2+NO and model compound 1 in PBS (10 mM, pH 7.4, 20 % DMF as a cosolvent).  $\lambda_{exc}$  was set at 480 nm.



Figure S6. Evolution over time of the emission spectrum of 10  $\mu$ M solutions of compounds 3 and 4 in PBS 10 mM (pH 7.4, 20 % DMF as a cosolvent) with 50 equivalents of DEA NONOate.  $\lambda_{exc}$  was set at the absorption maximum for each compound.



**Figure S7**. Mean fluorescence intensity obtained by flow cytometry of **2**-stained (10  $\mu$ M, 30 min) HT29 cells exposed to SNAP (100  $\mu$ M, 60 min). Excitation and emission were set at 488 nm and 585 nm, respectively. Data are shown as mean±SD, n=3. Statistical analysis was performed by one-way ANOVA followed by Tukey's multiple comparisons test ( \*\*\* indicates a p-value  $\leq 0.001$ ).



**Figure S8**. Mean fluorescence intensity obtained by flow cytometry of **2**-stained (10  $\mu$ M, 30 min) RAW 264.7 cells exposed to LPS (20  $\mu$ g/ml, overnight) and LPS+L-NMMA (20  $\mu$ g/ml and 50  $\mu$ M, overnight). Excitation and emission were set at 488 nm and 585 nm, respectively. Data are shown as mean±SD, n=3. Statistical analysis was performed by one-way ANOVA followed by Tukey's multiple comparisons test (\*\*\* indicates a p-value  $\leq 0.001$ ).



**Figure S9**. Viability of RAW 264.7 cells after incubation with different concentrations of probe **2** for 48 hours. Data are shown as mean $\pm$ SD, n=3.



Figure S10. <sup>1</sup>H NMR, <sup>13</sup>C NMR (CD<sub>3</sub>CN) and HRMS spectra of the precursor of compound 2.



Figure S11. <sup>1</sup>H NMR, <sup>13</sup>C NMR (DMSO-d<sub>6</sub>) and HRMS spectra of compound 2.



Figure S12. <sup>1</sup>H NMR, <sup>13</sup>C NMR (CD<sub>3</sub>CN) and HRMS spectra of the precursor of compound 3.



Figure S13. <sup>1</sup>H NMR, <sup>13</sup>C NMR (CD<sub>3</sub>CN) and HRMS spectra of compound 3.



Figure S14. <sup>1</sup>H NMR, <sup>13</sup>C NMR (CD<sub>3</sub>CN) and HRMS spectra of the precursor of compound 4.



Figure S15. <sup>1</sup>H NMR, <sup>13</sup>C NMR (CD<sub>3</sub>OD) and HRMS spectra of compound 4.

## References

- 1 M. Kim, S. K. Ko, H. Kim, I. Shin and J. Tae, Rhodamine cyclic hydrazide as a fluorescent probe for the detection of hydroxyl radicals, *Chem. Commun.*, 2013, **49**, 7959–7961.
- A. Maetzke and S. J. Knak Jensen, Reaction paths for production of singlet oxygen from hydrogen peroxide and hypochlorite, *Chem. Phys. Lett.*, 2006, **425**, 40–43.
- S. Miyamoto, G. R. Martinez, A. P. B. Martins, M. H. G. Medeiros and P. Di Mascio, Direct evidence of singlet molecular oxygen  $[O2 (1\Delta g)]$  production in the reaction of linoleic acid hydroperoxide with peroxynitrite, *J. Am. Chem. Soc.*, 2003, **125**, 4510–4517.