Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2021

Supplementary information

Sulfobetaine polymers for effective permeability into multicellular tumor spheroids (MCTSs)

1. Department of Materials Processing, Graduate School of Engineering, Tohoku

University. 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan

*E-mail: <u>morimoto@material.tohoku.ac.jp</u>

- 2. Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- 3. BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
- 4. Graduate School of Medical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan

*E-mail: masaya.yamamoto.b6@tohoku.ac.jp

Figure S1. ¹H NMR spectra of (top) OH-MAAmSB and (bottom) OH-AAmSB in D₂O

Figure S2. ¹H NMR spectra of (top) P(OH-MAAmSB) and (bottom) P(OH-AAmSB) in D₂O

Figure S3. Gel permeation chromatograms of sulfobetaine polymers

Figure S4. Flow cytometry measurements of fluorescein labeled polymers in monolayer cultured

HepG2 cells after 10 min incubation at each condition.

Figure S5. Live-dead cell CLSM imaging of HepG2 spheroids after 24 h co-incubation with polymers (final concentration : 1.0 mg/mL)

Figure S6. CLSM Z-series images of HepG2 MCTS after 30 min of P(OH-MAAmSB) addition.

Figure S7. (left) Time lapse images and (right) the line profiles of P(MASB-co-PEGMA) added HepG2 MCTS obtained by high performance-CLSM. Gamma correction was applied to the images to improve the visibility.