Supporting Information

[12]aneN₃-Conjugated AIEgens with Two-Photon Imaging Property for Synergistic Gene/Photodynamic Therapy *in Vitro* and *in Vivo*

Xu-Ying Liu^{*a*}, *Jing-Bo Yang*^{*a*}, *Cheng-Yan Wu*^{*a*}, *Quan Tang*^{*a*}, *Zhong-Lin Lu*^{*a*} * and Lan Lin^{*b*} *

^{*a*} Key Laboratory of Radiopharmaceutics, Ministry of Education; College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.

^b China National Institute for Food and Drug Control, Institute of Chemical Drug Control, No. 31 Huatuo St., Daxing District, Beijing, 102629, China. E-mail: luzl@bnu.edu.cn; linlan@nifdc.org.cn; helan1961@aliyun.com

Content

1. Experimental Section	3
1.1 Synthesis of TTC-L-M-1/2/3/4/5/6	4
1.2 In Vitro and in Vivo Experiments	10
2. Characterizations of TTC-L-M Derivatives	13
2.1. UV-Visible Spectra of the Compounds in Different Solvents	13
2.2 Micelle Formation	17
2.3 SEM, DLS and Zeta Measurements	18
2.4 EB Assay	20
2.5 Docking Assays and Gel Electrophoresis	21
2.6 DNA Release	23
2.7 Cell Cytotoxicity	23
2.8 Gene Transfection Assays	24
2.9 Tracing the Delivery of DNA	29
2.10 ROS and PDT	32
2.11 Western Blot	34
2.12 In vivo imaging	34
2.13 In vivo Antitumor Efficacy	35
3. ¹ H, ¹³ C-NMR Spectra and HR-MS of Synthesized Compounds	37
References	65

1. Experimental Section

Materials and Instrumentation. Unless otherwise specified, all the analytical pure solvents and chemicals were purchased from Macklin (Shanghai, China), and used without further purification. Anhydrous dichloromethane (DCM) and N,N-dimethyl formamide (DMF) were dried and purified under nitrogen by using standard methods. Electrophoresis-grade agarose, pUC-18 DNA, Gold View II, ethidium bromide (EB), lipase, ctDNA (calf thymus DNA), the luciferase assay kit, Hochest 33342, Lyso-Tracker Blue and Annexin V-FITC Apoptosis Detection Kit were obtained from Solarbio Company (Beijing, China). pGL-3, EGFP and Cy5-DNA were obtained from Ruibiotech Co., Ltd. (Beijing, China). DOPE (Dioleoylphosphatidyl ethanolamine) and 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide (MTT) was purchased from Santa Cruz Biotechnology. Lipofectamine 2000 was purchased from Invitrogen (Life technologies, Mauricio Minotta). DCFH-DA was supplied by Beyotime Biotechnology (China). Plasmid expressing p53 and siLuc were supplied by Shanghai GenePharma Co. Ltd. (China). The concentrations of ctDNA were measured by recording absorptions at 260 nm and applying Lambert-Beer's Law (molar absorption coefficient $\varepsilon = 6600 \text{ M}^{-1} \text{cm}^{-1}$).

¹H and ¹³C-NMR spectra were obtained on a JOEL spectrometer (400 and 600 MHz) and Bruker Avance III spectrometer (400 MHz) using CDCl₃ and DMSO-d₆ as solvent and calibrated using tetramethyl silane (TMS) as internal reference at 25 °C. High resolution mass spectra (HRMS) were recorded on a Waters LCT premier XE spectrometer (USA). Fluorescence spectra were measured on F-4600 FLSPECTOROPHOTOMET. Agarose electrophoresis was performed using a BGsubMIDI submarine system (BayGene Biotech Company Limited, Beijing, China) and the electrophoresis images were obtained on a UVP EC3 visible imaging system using 254 nm UV light for visualization. Scanning electron microscopy (SEM) images were performed on a Hitachi S-4800 (Japan). Confocal fluorescence imaging was obtained with Nikon A1R MP multiphoton microscopy (Japan) with a 60× oil-immersion objective lens. Flow cytometry assays were obtained on a CytoFLEX (Beckmancoulter, USA).

1.1 Synthesis of TTC-L-M-1/2/3/4/5/6

Scheme S1. Schematic Synthetic Route for TTC-L-M-1/2/3/4/5/6

Synthesis of 2-5

Under argon atmosphere, malonic mononitrile (2.85 mmol, 1 equiv.) and diol (3.42 mmol, 1.2 equiv.) was added to 30 mL dry DCM, and EDCI (3.42 mmol, 1.2 equiv.) was added slowly at 0 °C, after that, DMAP (3.42 mmol, 1.2 equiv.) was added and the reaction was stirred at room temperature for overnight. After completion, washed with saturated NaCO₃ aqueous solution, and combined the organic layer, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Crude residue was purified by silica gel column was eluted with PE/EtOAc ($v/v = 3:1 \sim 1:1$), to give 2-5 as colorless oil or white solid in 40–52% yields.

Compound 2: 0.163 g, 1.14 mmol; Yield: 40%. ¹H NMR (CDCl₃, 600 MHz) δ (ppm.) 4.37 (t, J = 6.2 Hz, 2H), 3.74 (t, J = 5.8 Hz, 2H), 3.62 (s, 2H), 3.46 (s, 1H), 2.01 – 1.86 (m, 2H). ¹³C NMR (CDCl₃, 101 MHz) δ (ppm.) 163.23, 113.10, 64.03, 58.92, 31.27, 24.83. ESI-MS: m/z calcd. [M+H]⁺ for C₆H₉NO₃, 143.06; found, 144.07

Compound 3: 0.248 g, 1.34 mmol; Yield: 47%. ¹H NMR (CDCl₃, 600 MHz) δ (ppm.) 4.20 (t, *J* = 6.9 Hz, 2H), 3.63 (t, *J* = 6.8 Hz, 2H), 3.44 (s, 2H), 1.69 (m, 2H), 1.57 (m, 2H), 1.40 (m, 4H). ¹³C NMR (CDCl₃, 101 MHz) δ (ppm.) 163.04, 113.13, 67.08, 62.79, 32.57, 28.35, 25.64, 25.41, 24.83, 24.79. ESI-MS: *m/z* calcd. [M+H]⁺ for C₉H₁₅NO₃, 185.11; found, 186.10.

Compound 4: 0.256 g, 1.20 mmol; Yield: 42%. ¹H NMR (CDCl₃, 600 MHz) δ (ppm.) 4.17 (t, *J* = 6.8 Hz, 2H), 3.60 (t, *J* = 6.8 Hz, 2H), 3.43 (s, 2H), 1.64 (m, 2H), 1.57 – 1.50 (m, 2H), 1.31 (m, 8H). ¹³C NMR (CDCl₃, 101 MHz) δ (ppm.) 163.06, 113.15, 67.17, 63.02, 32.76, 29.26, 29.12, 28.36, 25.67, 24.83. ESI-MS: *m/z* calcd. [M+H]⁺ for C₁₁H₁₉NO₃, 213.14; found, 214.13.

Compound 5: 0.399 g, 1.48 mmol; Yield: 52%. ¹H NMR (CDCl₃, 600 MHz) δ (ppm.) 4.20 (t, J = 5.7 Hz, 2H), 3.63 (t, J = 5.9 Hz, 2H), 3.44 (s, 2H), 1.73 – 1.62 (m, 2H), 1.56 (m, 1H), 1.27 (m, 16H). ¹³C NMR (CDCl₃, 101 MHz) δ (ppm.) 163.04, 113.10, 67.24, 63.17, 32.87, 29.56, 29.20, 25.78, 24.83. ESI-MS: m/z calcd. [M+H]⁺ for C₁₆H₂₇NO₃, 269.20; found, 270.20.

Synthesis of TTC Derivatives

Compound **TPE-H/OC**₈**H**₁₇ were obtained according to literature method^{[1],2}.

Under argon atmosphere, compound **TPE** (1.2 mmol, 1 equiv.), (5-formylthiophen-2yl) boronic acid (2.4 mmol, 2 equiv.) and Dppf (2.4 mmol, 2 equiv.) was added to a solution of dimethyloxyethane (DME): 2 M Na₂CO₃ (3:1, 100 mL). And the resultant mixture was heated to reflux for 24 h. After completion, reaction was quenched with water and extracted with DCM. The combined organic layer was washed with water, dried over anhydrous sodium sulfate, and evaporated. Crude residue was purified by silica gel column was eluted with PE/EtOAc (v/v =40:1 ~ 10:1), to give **TTC** as a yellow solid in 75-87% yield.

Compound TTC-H: 0.398 g, 0.9 mmol; Yield: 75%. ¹H NMR (CDCl₃, 400 MHz) δ (ppm.) 9.85 (s, 1H), 7.69 (d, J = 3.9 Hz, 1H), 7.41 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 4.0 Hz, 1H), 7.17 – 6.98 (m, 17H).

Compound TTC-OC₈**H**₁₇: 0.593 g, 1.04 mmol; Yield: 87%. ¹H NMR (CDCl₃, 400 MHz) δ (ppm.) 9.85 (s, 1H), 7.69 (d, J = 4.0 Hz, 1H), 7.42 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 3.9 Hz, 1H), 7.08 (m, 8H), 7.00 (m, 4H), 6.94 (d, J = 8.7 Hz, 2H), 6.64 (d, J = 8.7 Hz, 2H), 3.87 (t, J = 6.6 Hz, 2H), 1.77 – 1.67 (m, 2H), 1.41 (m, 2H), 1.27 (m, 8H), 0.86 (t, J = 6.9 Hz, 3H).

Synthesis of TTC-L Derivatives

Under argon atmosphere, compound **TTC** (0.41 mmol, 1 equiv.), compound **2-5** and piperidine (1.2 mmol, 3 equiv) was added to 20mL CH₃CN. The reaction mixture was heated to reflux for overnight and cooled to room temperature. The pH value of the aqueous phase was adjusted to 2.0–3.0 with HCl (0.1 M). The reaction mixture was extracted with DCM. The extract was then dried over Na₂SO₄ and filtered. After evaporation at a reduced pressure, crude residue was purified by silica gel column was eluted with PE/EtOAc (v/v =5:1 ~ 2:1), to give **TTC-L-1/2/3/4/5/6** as a yellow solid in 42-95% yield.

TTC-L-1: 0.098 g, 0.17 mmol; Yield: 42%.¹H NMR (CDCl₃, 600 MHz) δ (ppm.) 8.26 (s, 1H), 7.71 (d, *J* = 3.8 Hz, 1H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 3.7 Hz, 1H), 7.15 – 6.96 (m, 17H), 4.45 (t, *J* = 6.2 Hz, 2H), 3.78 (t, *J* = 6.2 Hz, 2H), 2.01 – 1.96 (m, 2H). ¹³C NMR (CDCl₃, 101 MHz) δ (ppm.) 163.45, 154.93, 146.93, 145.70, 143.45, 143.28, 142.23, 139.97, 139.51, 134.71, 132.30, 131.45, 131.38, 130.58, 128.03, 127.95, 127.79, 126.99, 126.83, 125.84, 124.32, 116.13, 97.34, 77.49, 77.17, 76.85, 63.38, 59.04, 31.65. ESI-MS: *m/z* calcd. [M+H]⁺ for C₃₇H₂₉NO₃S, 567.19; found, 568.22

TTC-L-2: 0.150 g, 0.25 mmol; Yield: 60%. ¹H NMR (CDCl₃, 600 MHz) δ (ppm.) 8.25 (s, 1H), 7.70 (d, *J* = 4.7 Hz, 2H), 7.42 (d, *J* = 7.7 Hz, 2H), 7.33 (d, *J* = 4.5 Hz, 1H), 7.16 – 7.08 (m, 10H), 7.07 – 7.00 (m, 7H), 4.29 (t, *J* = 6.5 Hz, 2H), 3.65 (t, *J* = 6.0 Hz, 2H), 1.76 (m, 2H), 1.59 (m, 2H), 1.53 – 1.31 (m, 4H). ¹³C NMR (CDCl₃, 151 MHz) δ (ppm.) 163.17, 154.69, 146.62, 145.64, 143.47, 143.44, 143.30, 142.22, 139.99, 139.13, 134.80, 132.28, 132.22, 131.44, 131.37, 130.64, 128.01, 127.98, 127.92, 127.77, 126.96, 126.92, 126.81, 126.75, 125.82, 124.26, 116.13, 97.81, 66.50, 62.90, 32.67, 28.57, 25.80, 25.47, 0.07. ESI-MS: *m/z* calcd. [M+H]+ for C₄₀H₃₅NO₃S, 609.23; found, 610.23

TTC-L-3: 0.212 g, 0.33 mmol; Yield: 81%. ¹H NMR (CDCl₃, 600 MHz) δ (ppm.) 8.25 (s, 1H), 7.70 (d, J = 3.8 Hz, 1H), 7.42 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 3.8 Hz, 1H), 7.16 – 6.98 (m, 17H), 4.28 (t, J = 6.8 Hz, 2H), 3.64 (t, J = 6.6 Hz, 2H), 1.73 (m, 2H), 1.62 (m, 2H), 1.42 (m, 2H), 1.35 (m, 6H). ¹³C NMR (CDCl₃, 101 MHz) δ (ppm.) 163.18, 154.64, 146.65, 145.62, 143.47, 143.30, 142.20, 139.99, 139.29, 134.78, 132.29, 131.46, 131.39, 130.63, 128.03, 127.95, 127.79, 126.98, 126.83, 125.82, 124.28, 116.13, 97.78, 77.53, 77.23, 76.90, 66.61, 63.01, 32.81, 29.30, 29.19, 28.58, 25.79, 25.72. ESI-MS: *m/z* calcd. [M+H]⁺ for C₄₂H₃₉NO₃S, 637.27; found, 638.26

TTC-L-4: 0.270 g, 0.39 mmol; Yield: 95%.¹H NMR (CDCl₃, 600 MHz) δ (ppm.) 8.25 (s, 1H), 7.70 (d, *J* = 3.9 Hz, 1H), 7.53 (d, *J* = 4.1 Hz, 1H), 7.42 (d, *J* = 8.3 Hz, 1H), 7.33 (d, *J* = 4.0 Hz, 1H), 7.14 – 7.07 (m, 10H), 7.07 – 6.97 (m, 7H), 4.27 (t, *J* = 6.6 Hz, 2H), 3.63 (t, *J* = 6.6 Hz, 2H), 1.73 (m, 2H), 1.55 (m, 2H), 1.40 (m, 2H), 1.33 (m, 2H), 1.27 (s, 12H). ¹³C NMR (CDCl₃, 151 MHz) δ (ppm.) 163.18, 154.60, 146.54, 145.61, 143.48, 143.30, 143.12, 142.21, 140.00, 139.05, 134.82, 132.27, 132.21, 131.45, 131.37, 130.99, 130.66, 128.93, 127.98, 127.92, 127.77, 126.96, 126.92, 126.80, 126.75, 125.81, 124.25, 116.10, 97.94, 66.65, 63.19, 32.90, 29.79, 29.59, 29.49, 29.26, 28.63, 25.87, 22.78, 19.27, 14.20, 0.07. ESI-MS: *m/z* calcd. [M+H]⁺ for C₄₆H₄₇NO₃S, 693.33; found, 694.68

TTC-L-5: 0.142 g, 0.21 mmol; Yield: 50%.¹H NMR (CDCl₃, 600 MHz) δ (ppm.) 8.28 (s, 1H), 7.73 (d, *J* = 4.0 Hz, 1H), 7.45 (d, *J* = 7.6 Hz, 2H), 7.36 (d, *J* = 3.9 Hz, 1H), 7.14 – 7.07 (m, 8H), 7.06 – 7.00 (m, 4H), 6.95 (d, *J* = 8.0 Hz, 2H), 6.66 (d, *J* = 7.9 Hz, 2H), 4.47 (t, *J* = 5.9 Hz, 2H), 3.88 (t, *J* = 6.6 Hz, 2H), 3.79 (t, *J* = 5.8 Hz, 2H), 2.03 – 1.97 (m, 2H), 1.79 – 1.70 (m, 2H), 1.41 (m, 2H), 1.36 – 1.28 (m, 8H), 0.87 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (CDCl₃, 101 MHz) δ (ppm.) 163.47, 157.99, 155.07, 146.94, 146.16, 146.08, 143.76, 143.67, 143.58, 141.94, 139.50, 138.93, 135.58, 135.54, 134.63, 132.62, 132.33, 131.50, 131.49, 131.47, 131.03, 130.35, 130.34, 128.94, 128.01, 127.96, 127.72, 126.91, 126.63, 125.78, 124.25, 116.13, 113.68, 97.24, 67.92, 63.34, 59.05, 31.90, 29.47, 29.32, 26.15, 22.75, 14.21. ESI-MS: *m*/*z* calcd. [M+H]⁺ for C₄₅H₄₅NO₄S, 695.31; found, 696.41

TTC-L-6: 0.263 g, 0.34 mmol; Yield: 84%. ¹H NMR (CDCl₃, 400 MHz) δ (ppm.) δ 8.25 (s, 1H), 7.71 (d, *J* = 4.0 Hz, 1H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 4.1 Hz, 1H), 7.11 – 7.06 (m, 8H), 7.04 – 6.98 (m, 4H), 6.94 (d, *J* = 8.7 Hz, 2H), 6.65 (d, *J* = 8.7 Hz, 2H), 4.28 (t, *J* = 6.7 Hz, 2H), 3.87 (t, *J* = 6.6 Hz, 2H), 3.63 (t, *J* = 6.6 Hz, 2H), 1.79 – 1.67 (m, 2H), 1.56 (m, 2H), 1.43 – 1.36 (m, 8H), 1.28 (m, 10H), 0.86 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (CDCl₃, 101 MHz) δ (ppm.) 163.20, 158.14, 154.79, 146.63, 146.06,

145.99, 143.75, 143.67, 143.58, 141.93, 139.19, 138.94, 135.58, 134.70, 132.61, 132.31, 131.50, 131.48, 131.46, 130.40, 130.39, 127.99, 127.94, 127.87, 127.70, 126.89, 126.61, 125.87, 125.75, 124.18, 116.16, 116.14, 113.67, 97.71, 67.91, 66.58, 63.09, 33.99, 32.82, 31.89, 29.47, 29.37, 29.26, 29.17, 28.57, 26.14, 25.01, 22.74, 14.20. ESI-MS: m/z calcd. [M-H]⁻ for C₅₀H₅₅NO₄S, 765.39; found, 764.24

Synthesis of target compound TTC-L-M-1/2/3/4/5/6^[2].

Under argon atmosphere, compound 1 (0.13 mmol, 1 equiv.) and EDCI (0.16 mmol, 1.2 equiv.) was added to 15mL dry DCM, and compounds TTC-L derivatives (3.42 mmol, 1.2 equiv.) was added slowly at 0 °C, after that, DMAP (0.16 mmol, 1.2 equiv.) was added and the reaction was stirred at room temperature for overnight. After completion, washed with saturated NaCO₃ aqueous solution, and combined the organic layer, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Crude residue was purified by silica gel column was eluted with DCM/MeOH (v/v =40:1 ~ 15:1), to give 6-11 as a yellow solid in 40-56% yield. The obtained compounds 6-11 were subsequently dissolved in 5 mL anhydrous DCM then CF₃COOH was added dropwise to the mixture solution. After stirring for 30 min at room temperature, a large amount of yellow precipitates was obtained. The solid collected by filtering and then washed with ether for several times, and then the solid were dried in vacuo to give the target compounds TTC-L-M-1/2/3/4/5/6 as yellow solid in 75–90% yields.

Compound 6: 0.117 g, 0.07 mmol; Yield: 56%.¹H NMR (CDCl₃, 400 MHz) δ (ppm.) 8.25 (s, 1H), 7.90 (s, 2H), 7.71 (d, J = 4.0 Hz, 1H), 7.47 – 7.32 (m, 6H), 7.17 – 7.08 (m, 11H), 7.06 – 7.00 (m, 6H), 5.53 (s, 4H), 4.45 (dt, J = 12.0, 6.0 Hz, 4H), 3.77 (s, 4H), 3.31 (m, 16H), 2.43 (s, 8H), 2.27 – 2.17 (m, 2H), 1.85 (dd, J = 13.0, 6.1 Hz, 12H), 1.44 (s, 36H). ¹³C NMR (CDCl₃, 101 MHz) δ (ppm.)171.22, 165.11, 163.01, 156.40, 146.99, 144.44, 143.42, 139.92, 136.70, 134.61, 132.30, 131.36, 130.51, 129.23, 128.00, 127.76, 126.81, 125.82, 124.35, 122.60, 116.02, 97.15, 79.36, 60.47, 53.28, 49.77, 46.80, 45.50, 43.90, 28.58, 26.20, 21.14. HRMS-ESI: m/z calcd. $[M+2H]^{2+}$ for C₉₀H₁₁₃N₁₃O₁₂S, 1601.8498; found, 1601.8506

Compound 7: 0.105 g, 0.06 mmol; Yield: 49%. ¹H NMR (CDCl₃, 400 MHz) δ(ppm.) 8.26 (s, 1H), 7.91 (s, 2H), 7.72 (d, J = 4.1 Hz, 1H), 7.43 (d, J = 8.3 Hz, 3H), 7.38 (s, 1H), 7.34 (s, 2H), 7.16 – 7.08 (m, 10H), 7.07 – 7.00 (m, 7H), 5.54 (s, 4H), 4.31 (q, J =6.5 Hz, 4H), 3.78 (s, 2H), 3.32 (m, 18H), 2.43 (m, 6H), 1.83 (m, 18H), 1.48 (m, 4H), 1.44 (s, 36H). ¹³C NMR (CDCl₃, 101 MHz) δ (ppm.) 165.31, 163.17, 156.44, 154.75, 146.70, 145.67, 143.45, 143.28, 142.22, 139.96, 139.32, 136.60, 134.74, 132.29, 131.44, 131.38, 130.60, 129.24, 128.01, 127.93, 127.78, 126.96, 126.82, 125.81, 124.30, 122.61, 116.13, 97.65, 79.41, 77.44, 77.33, 77.12, 76.81, 66.30, 65.58, 53.36, 49.76, 46.83, 45.50, 43.92, 31.68, 29.78, 28.59, 26.18, 25.65, 25.57, 22.74, 14.22, 0.09. HRMS-ESI: *m/z* calcd. [M+2H]²⁺ for C₉₃H₁₁₉N₁₃O₁₂S, 1643.8968; found, 1643.8966 **Compound 8:** 0.084 g, 0.05 mmol; Yield: 40%. ¹H NMR (CDCl₃, 600 MHz) δ (ppm.) 8.24 (s,1H), 7.89 (s, 2H), 7.70 (d, J = 4.1 Hz, 1H), 7.41 (d, J = 8.4 Hz, 2H), 7.35 (s, 2H), 7.33 (d, J = 4.0 Hz, 1H), 7.31 (s, 1H), 7.13 – 7.00 (m, 17H), 5.53 (s, 4H), 4.28 (q, J = 6.7 Hz, 4H), 3.77 (s, 2H), 3.76 (s, 2H), 3.30 (m, 16H), 2.42 (m, 8H), 1.86 (d, J =6.6 Hz, 2H), 1.83 - 1.80 (m, 10H), 1.73 (d, J = 6.9 Hz, 2H), 1.43 (m, 46H). ¹³C NMR (CDCl₃, 101 MHz) δ (ppm.) 172.46, 166.60, 157.68, 155.92, 147.87, 145.80, 144.74,

144.58, 143.52, 141.28, 140.46, 137.94, 136.06, 133.57, 132.72, 132.65, 130.45, 129.29, 129.22, 129.06, 128.25, 128.10, 127.09, 125.59, 123.84, 80.64, 67.06, 61.74, 54.63, 51.20, 48.16, 46.84, 45.24, 30.43, 29.90, 28.54, 27.59, 27.20, 27.11, 22.41, 15.58. HRMS-ESI: m/z calcd. $[M+2H]^{2+}$ for C₉₅H₁₂₃N₁₃O₁₂S, 1671.9281; found, 1671.9280 **Compound 9:** 0.110 g, 0.06 mmol; Yield: 49%. ¹H NMR (CDCl₃, 600 MHz) δ (ppm.) 8.24 (s, 1H), 7.88 (s, 2H), 7.70 (d, J = 4.0 Hz, 1H), 7.42 (d, J = 8.2 Hz,2H), 7.35 (s, 1H), 7.33 (d, J = 4.1 Hz, 2H), 7.14 – 6.97 (m, 17H), 5.53 (s, 4H), 4.27 (dt, J = 6.9, 3.4Hz, 4H), 3.77 (s, 2H), 3.44 – 3.09 (m, 18H), 2.42 (m, 6H), 1.84 (m, 12H), 1.73 (t, J = 7.0 Hz, 6H), 1.43 (s, 40H), 1.28 (m, 12H). ¹³C NMR (CDCl₃, 101 MHz) δ (ppm.) 165.34, 163.15, 156.47, 154.58, 146.53, 145.60, 143.45, 143.29, 142.21, 139.99, 139.09, 136.53, 134.79, 132.26, 132.21, 131.43, 131.36, 130.96, 130.64, 129.57, 129.35, 128.88, 127.99, 127.91, 127.76, 126.95, 126.80, 126.75, 125.79, 124.26, 116.10, 97.91, 79.61, 68.23, 67.85, 66.63, 65.83, 53.51, 49.15, 47.18, 45.52, 44.31, 39.00, 34.02, 32.00, 30.65, 29.76, 29.61, 29.34, 29.06, 28.73, 28.57, 25.02, 24.07, 23.05, 14.19, 11.17, 1.09. HRMS-ESI: m/z calcd. $[M+2H]^{2+}$ for C₉₉H₁₃₁N₁₃O₁₂S, 1727.9907; found, 1727.9906 **Compound 10:** 0.103 g, 0.06 mmol; Yield: 46%. ¹H NMR (CDCl₃, 400 MHz) δ (ppm.) 8.25 (d, J = 4.9 Hz, 1H), 7.90 (s, 2H), 7.71 (dd, J = 8.0, 4.0 Hz, 1H), 7.49 - 7.32 (m, 6H), 7.16 - 7.08 (m, 7H), 7.07 - 7.00 (m, 5H), 6.92 (dd, J = 15.8, 8.6 Hz, 2H), 6.63 (dd, J = 12.4, 8.7 Hz, 2H), 5.54 (s, 4H), 4.45 (m, 4H), 3.87 (m, 2H), 3.78 (s, 4H), 3.31 (s, 16H), 2.44 (s, 7H), 2.26 - 2.18 (m, 2H), 1.84 (m, 12H), 1.77 - 1.68 (m, 2H), 1.43 (s, 38H), 1.27 (m, 8H), 0.87 (t, J = 5.0 Hz, 3H). ¹³C NMR (CDCl₃, 101 MHz) δ (ppm.) 171.13, 165.01, 162.93, 157.89, 156.31, 146.90, 144.25, 143.63, 141.88, 136.57, 135.43, 134.44, 132.50, 132.23, 131.81, 131.63, 131.37, 129.14, 127.83, 126.78, 126.51, 125.78, 125.66, 124.19, 122.58, 113.76, 113.57, 96.96, 79.30, 67.81, 62.92, 60.37, 53.19, 49.57, 45.39, 43.85, 31.78, 29.35, 29.26, 29.19, 28.48, 26.03, 22.63, 21.03, 14.18. HRMS-ESI: m/z calcd. $[M+2H]^{2+}$ for $C_{98}H_{129}N_{13}O_{13}S$, 1729.9700; found, 1729.9698

Compound 11: 0.105 g, 0.06 mmol; Yield: 45%.¹H NMR (CDCl₃, 400 MHz) δ (ppm.) 8.24 (d, *J* = 4.0 Hz, 1H), 7.88 (s, 2H), 7.70 (dd, *J* = 7.2, 4.2 Hz, 1H), 7.42 (dd, *J* = 15.5, 8.4 Hz, 2H), 7.36 – 7.30 (m, 4H), 7.10 (m, 7H), 7.03 (m, 5H), 6.91 (dd, J = 15.0, 8.7 Hz, 2H), 6.63 (dd, J = 12.1, 8.8 Hz, 2H), 5.53 (s, 4H), 4.28 (dd, J = 11.7, 6.4 Hz, 4H), 3.86 (t, J = 5.5 Hz, 2H), 3.76 (s, 4H), 3.30 (s, 16H), 2.42 (t, J = 5.9 Hz, 8H), 1.92 (d, J= 9.0 Hz, 6H), 1.86 - 1.79 (m, 10H), 1.71 (d, J = 7.2 Hz, 6H), 1.57 (s, 3H), 1.43 (s, 40H), 1.38 (m, 4H), 1.32 (m, 2H), 1.27 (m, 6H), 0.87 (t, J = 4.9 Hz, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ (ppm.) 171.17, 165.29, 163.14, 156.89, 156.36, 146.58, 144.48, 143.73, 141.92, 139.16, 136.60, 135.55, 134.66, 132.57, 132.28, 131.43, 130.36, 129.14, 127.97, 127.68, 126.86, 126.59, 125.72, 124.19, 122.51, 116.10, 113.67, 97.69, 79.33, 65.75, 60.43, 53.31, 49.87, 46.82, 45.51, 43.90, 34.04, 31.86, 30.98, 29.35, 28.72, 28.67, 28.63, 28.61, 28.60, 28.57, 28.54, 28.53, 26.11, 25.72, 25.02, 22.70, 21.10, 14.26. HRMS-ESI: m/z calcd. $[M+2H]^{2+}$ for C₁₀₃H₁₃₉N₁₃O₁₃S, 1800.0496; found, 1800.0480 **Compound TTC-L-M-1:** 0.063 g, 0.05 mmol; Yield: 75%. ¹H NMR (CD₃OD, 600 MHz) δ (ppm.) 9.41 (s, 4H), 8.50 (s, 1H), 8.15 (s, 2H), 7.99 (d, J = 4.4 Hz, 1H), 7.81 (s, 2H), 7.70 (d, J = 4.4 Hz, 1H), 7.55 (s, 2H), 7.16 – 6.91 (m, 18H), 5.64 (s, 4H), 4.36 (t, J = 4.9 Hz, 4H), 3.73 (m, 4H), 3.13 (m, 4H), 3.04 (s, 12H), 2.10 (m, 2H), 2.04 (m,

5H), 1.99 (m, 2H), 1.97 (m, 1H), 1.93 (s, 6H), 1.89 (m, 7H). ¹³C NMR (DMSO, 151 MHz) δ (ppm.) 179.79, 172.50, 165.53, 162.77, 153.66, 147.79, 145.43, 143.47, 143.45, 143.25, 142.74, 142.11, 140.24, 138.16, 134.90, 132.29, 131.27, 131.21, 131.15, 131.12, 130.75, 128.74, 128.56, 128.52, 128.39, 127.46, 127.33, 127.27, 126.28, 125.92, 125.38, 116.52, 97.29, 63.45, 62.52, 52.51, 36.15, 31.84, 28.13, 24.41, 24.14, 21.64. HRMS-ESI: m/z calcd. $[M+2H]^{2+}$ for C₇₀H₈₁N₁₃O₄S, 1201.6401; found, 1201.6400

Compound TTC-L-M-2: 0.062 g, 0.05 mmol; Yield: 83%.¹H NMR (DMSO, 600 MHz) δ (ppm.) 8.88 (s, 5H), 8.49 (s, 1H), 8.17 (s, 2H), 8.00 (s, 1H), 7.71 (m, 3H), 7.55 (d, *J* = 7.9 Hz, 2H), 7.50 (s, 1H), 7.19 – 7.08 (m, 9H), 7.04 (d, *J* = 8.1 Hz, 2H), 7.02 – 6.89 (m, 6H), 5.65 (s, 4H), 4.22 (t, *J* = 6.6 Hz, 4H), 3.69 (s, 4H), 3.49 – 3.16 (m, 11H), 3.08 (m, 12H), 2.03 (s, 2H), 1.80 (s, 7H), 1.66 (s, 6H), 1.38 (s, 4H). ¹³C NMR (DMSO, 151 MHz) δ (ppm.) 165.55, 162.82, 158.88, 158.67, 153.60, 147.73, 145.45, 143.46, 143.25, 142.70, 142.13, 140.22, 138.09, 134.91, 132.31, 131.38, 131.27, 131.22, 131.15, 130.74, 128.56, 128.52, 128.40, 127.45, 127.34, 126.26, 125.90, 125.41, 116.54, 97.35, 66.40, 65.47, 52.55, 43.97, 40.49, 40.35, 40.21, 40.07, 39.93, 39.79, 39.66, 28.55, 28.42, 25.46, 25.41, 21.67. HRMS-ESI: *m*/*z* calcd. [M+2H]²⁺ for C₇₃H₈₇N₁₃O₄S, 1243.6871; found, 1243.6870

Compound TTC-L-M-3: 0.050 g, 0.04 mmol; Yield: 79%. ¹H NMR (CD₃OD, 400 MHz) δ (ppm.) 8.36 (s, 1H), 8.09 (s, 1H), 7.90 (d, J = 8.5 Hz, 2H), 7.80 (d, J = 3.8 Hz, 1H), 7.56 (s, 1H), 7.47 (m, 3H), 7.16 – 6.91 (m, 18H), 5.68 (s, 4H), 4.27 (m, 4H), 3.84 (s, 2H), 3.43 (s, 2H), 3.36 (s, 8H), 3.26 (s, 6H), 3.12 (t, J = 6.7 Hz, 1H), 2.81 (s, 4H), 2.30 (s, 3H), 2.15 (m, 4H), 2.10 – 2.03 (m, 9H), 1.73 (m, 2H). ¹³C NMR (CD₃OD, 151 MHz) δ (ppm.) 165.55, 162.87, 154.14, 146.71, 145.59, 143.46, 143.26, 142.27, 140.49, 140.10, 137.09, 134.70, 132.08, 131.78, 131.10, 131.05, 130.98, 130.70, 128.70, 127.71, 127.66, 127.48, 126.67, 126.52, 125.41, 124.55, 115.80, 97.24, 66.16, 65.39, 52.97, 51.52, 48.34, 48.13, 47.91, 47.70, 47.49, 47.27, 47.06, 45.38, 44.71, 43.28, 28.70, 28.34, 28.21, 27.38, 25.56, 22.18, 21.33, 20.04. HRMS-ESI: m/z calcd. [M+2H]²⁺ for C₇₅H₉₁N₁₃O₄S, 1271.7146; found, 1271.7182

Compound TTC-L-M-4: 0.072 g, 0.05 mmol; Yield: 90%. ¹H NMR (DMSO, 600 MHz) δ (ppm.) 8.86 (s, 5H), 8.50 (s, 1H), 8.17 (s, 2H), 8.01 (s, 1H), 7.70 (m, 3H), 7.54 (d, *J* = 8.1 Hz, 2H), 7.51 (s, 1H), 7.12 (m, 10H), 7.03 (d, *J* = 7.8 Hz, 2H), 7.02 – 6.85 (m, 5H), 5.66 (s, 4H), 4.19 (q, *J* = 6.9 Hz, 4H), 3.69 (s, 4H), 3.35 (m, 6H), 3.08 (m, 14H), 2.51 (m, 6H) ,2.03 (m, 2H), 1.80 (m, 10H), 1.62 (m, 6H), 1.29 (m, 4H), 1.22 (m, 12H). ¹³C NMR (DMSO, 151 MHz) δ (ppm.) 165.54, 162.81, 158.83, 158.62, 153.58, 147.71, 145.43, 143.46, 143.25, 142.68, 142.11, 140.23, 134.92, 132.30, 131.27, 131.22, 131.16, 128.55, 128.52, 128.47, 128.39, 127.45, 127.33, 126.25, 125.88, 116.52, 97.39, 66.48, 65.55, 65.45, 52.55, 44.00, 42.76, 42.37, 40.50, 40.36, 40.22, 40.08, 39.94, 39.80, 39.66, 29.51, 29.48, 29.44, 29.18, 29.11, 28.67, 28.52, 25.86, 25.76, 15.70. HRMS-ESI: *m*/*z* calcd. [M+2H]²⁺ for C₇₉H₉₉N₁₃O₄S,1327.7810; found, 1327.7808

Compound TTC-L-M-5: 0.064 g, 0.05 mmol; Yield: 80%. ¹H NMR (DMSO, 600 MHz) δ (ppm.) 8.54 (d, J = 6.8 Hz, 1H), 8.18 (s, 2H), 8.03 (dd, J = 9.1, 4.2 Hz, 1H), 7.84 (s, 2H), 7.74 (dd, J = 13.0, 4.0 Hz, 1H), 7.59 (dd, J = 25.4, 8.1 Hz, 2H), 7.45 (s,

1H), 7.20 - 7.11 (m, 6H), 7.08 (d, J = 8.2 Hz, 1H), 7.06 - 7.01 (m, 3H), 7.00 - 6.95 (m, 2H), 6.90 (d, J = 8.6 Hz, 1H), 6.85 (d, J = 8.6 Hz, 1H), 6.72 (d, J = 8.7 Hz, 1H), 6.68 (d, J = 8.7 Hz, 1H), 5.69 (s, 4H), 5.29 (s, 2H), 4.40 (d, J = 6.0 Hz, 4H), 3.86 (t, J = 6.4 Hz, 2H), 3.77 (s, 4H), 2.93 (dt, J = 144.8, 42.8 Hz, 14H), 2.13 (t, J = 6.2 Hz, 2H), 2.05 (s, 3H), 2.03 (d, J = 5.2 Hz, 1H), 1.97 (d, J = 2.4 Hz, 1H), 1.91 (s, 4H), 1.64 (q, J = 6.8 Hz, 3H), 1.38 - 1.33 (m, 2H), 1.31 - 1.21 (m, 12H), 0.85 (dt, J = 13.2, 6.9 Hz, 3H). ^{13}C NMR (DMSO, 151 MHz) δ (ppm.) 179.80, 172.50, 165.52, 162.78, 153.75, 147.79, 143.79, 142.75, 141.85, 138.17, 135.50, 134.84, 132.49, 132.34, 131.32, 131.13, 130.58, 128.73, 128.58, 128.50, 128.32, 127.20, 126.34, 126.24, 125.85, 116.52, 114.45, 114.26, 97.21, 67.82, 63.43, 62.50, 52.51, 36.15, 31.75, 29.25, 29.16, 28.13, 26.03, 24.40, 24.13, 22.60, 21.62, 14.48. HRMS-ESI: m/z calcd. $[M+2H]^{2+}$ for $C_{78}H_{97}N_{13}O_5S, 1329.7602$; found, 1329.7600

Compound TTC-L-M-6: 0.073 g, 0.05 mmol; Yield: 87%. ¹H NMR (CD₃OD, 400 MHz) δ (ppm.) 8.33 (s, 1H), 8.08 (s, 1H), 7.87 (s, 2H), 7.77 (d, J = 9.3 Hz, 1H), 7.58 (s, 1H), 7.52 (d, J = 11.1 Hz, 2H), 7.48 (d, J = 7.6 Hz, 1H), 7.19 – 6.96 (m, 13H), 6.92 (d, J = 8.1 Hz, 1H), 6.86 (d, J = 8.1 Hz, 1H), 6.67 (d, J = 7.4 Hz, 1H), 6.61 (d, J = 9.1 Hz, 1H), 5.67 (s, 4H), 4.58 – 4.33 (m, 4H), 3.86 (m, 4H), 3.36 (m, 12H), 3.28 – 3.15 (m, 6H), 2.94 – 2.72 (m, 4H), 2.37 – 2.25 (m, 4H), 2.20 (m, 4H), 2.16 (m, 2H), 2.14 – 2.09 (m, 6H), 2.07 - 2.03 (m, 12H), 1.69 (q, J = 7.1 Hz, 2H), 1.41 (m, 4H), 1.29 (m, 13H), 0.90 – 0.85 (m, 3H). ¹³C NMR (DMSO, 151 MHz) δ (ppm.) 179.78, 179.59, 172.49, 165.56, 162.82, 158.04, 157.92, 157.27, 153.67, 153.62, 147.69, 145.77, 143.78, 143.65, 142.70, 141.83, 139.25, 138.19, 135.50, 134.86, 132.54, 132.48, 132.33, 132.10, 131.31, 131.26, 130.56, 128.57, 128.49, 128.32, 127.40, 127.18, 126.30, 126.21, 125.82, 125.37, 116.53, 114.45, 114.25, 97.34, 67.81, 66.49, 65.55, 52.52, 48.00, 33.87, 31.74, 29.24, 29.16, 29.04, 28.65, 28.52, 26.04, 25.89, 25.80, 25.71, 24.97, HRMS-ESI: $[M+2H]^{2+}$ m/zcalcd. for 24.14, 22.59. 21.64, 14.48. C₈₃H₁₀₇N₁₃O₅S,1399.8385; found, 1399.8384

1.2 In Vitro and in Vivo Experiments

Fluorescence Measurements: TTC-L-M-1/2/3/4/5/6 were dissolved in DMSO to obtain the stock solutions (1 mM). Solutions of different concentrations were obtained by transferring appropriate aliquots of stock solutions to volumetric flasks and then diluting them to certain volumes using deionised Milli-Q water and organic solvent. All of the samples were vortex mixed and allowed to stand for 6 - 10 min before testing.

Gel Retardation Assay. The samples were prepared by adding liposomes with different concentrations to 1 μ L of pUC18 DNA (200 μ g/mL) in Tris-HCl buffer (50 mM, pH 7.4) with a total volume of 20 μ L at room temperature. After that, the samples were incubated at 37°C for 30 min, and 2 μ L of 6× loading buffer were added to the above samples. The samples were electrophoresed at 100 V on a 0.7% agarose gel containing GelRed in Tris-acetate (TAE) running buffer for 30 min. The result was visualized under on a UVP EC3 visible imaging system

Assembly of TTC-L-M-1/2/3/4/5/6: The morphologies of micelles and complexes were studied by scanning electronic microscopy (SEM) and dynamic light scattering (DLS). The DLS sample were prepared similar to gel retardation assay, the solution was

diluted to 200 μ L after interaction with negatively supercoiled pUC18 DNA at 37°C for 30 min. The diluted solution 10 μ L dropped on the surface of wafer, then completely evaporated to obtain the SEM.

¹O₂-Generation Detection: ABDA was applied as the ¹O₂⁻ monitoring agent. The 25 μ L of ABDA stock solution (1mg/mL) was added to 2 mL of TTC-L-M-4 suspension (10 μ M), and LED light (450 nm, 10 mW/cm⁻²) was employed as the irradiation source. The absorption of ABDA was recorded at 378 nm at various irradiation times to obtain the decay rate of the photosensitizing process.

Cytotoxicity Assay. The cytotoxicity of liposomes was investigated in HeLa, A549 and HepG2 cells by MTT assay. All cells were cultured in complete medium in a humidified atmosphere containing 5% CO₂ at 37 °C. After 24 h of incubation, the cells were seeded in 96-well plate (7000 cells/well) and cultured for another 24 h. The cells were incubated with different concentrations of liposomes for 4 h. Then, 100 μ L complete medium were added to each well and cultured for 20 h. The medium was replaced with 20 μ L of MTT (5 mg/mL) and incubated for another 4 h. Finally, MTT was replaced with 120 μ L of DMSO, and the plates were oscillated for 10 min to fully dissolve the formazan crystals formed by living cells in the wells. The optical density (OD) was recorded at 490 nm using a Thermo Scientific Multiskan GO. The viability of the cells was calculated using the following formula:

Cell viability = [*OD*490 (*Sample*) - *OD*490 (*Blank*)] / [*OD*490 (*Control*) - *OD*490 (*Blank*)] × 100%

HeLa cells were treated with **TTC-L-M-4**/DOPE for 4 h and then exposed to LED light (450 nm, 10 mW/cm⁻²) for the exploration of phototoxicity. The cytotoxicity was performed using the MTT assay as described above 24 h later. Cells without any treatments were used as controls.

Cell Imaging. Time dependence of cellular uptakes of **TTC-L-M-4**/DOPE/Cy5-DNA were measured by confocal laser scanning microscopy (CLSM) in HeLa cell lines. The cells were seeded in Glass Bottom Cell Culture Dishes at 5×10^4 cells per dish and cultured for 24 h. After washed three times with PBS, the cells were exposure to **TTC-L-M-4**/DOPE/Cy5-DNA for predetermined durations. The Hoechst 33342 (5 μ g/mL) was also added to the cells for nuclear staining at 37 °C for 10 min. Finally, the cells were washed for 5 times with PBS buffer, observed using a confocal laser scanning microscope with a 60× oil-immersion objective.

Cell Migration Study: The cells were incubated for 4 h with TTC-L-M-4/DOPE/pGL-3 and TTC-L-M-4/DOPE/p53 in a 6-well chamber. Then, a 10 μ L tip was then used to scratch a wound gap on the monolayer HeLa cells. The scratched cells were washed away with 1 × PBS buffer, and the wound gaps were imaged by CLSM with a 10× objection and cultured for 20 h. For the PDT-treated group (TTC-L-M-4/DOPE/pGL-3 (+L)) and the combination treatment group (TTC-L-M-4/DOPE/p53 (+L)), the cells were subjected to light irradiation for 10 min irradiation at 24 h post-internalization. For the gene therapy group (TTC-L-M-4/DOPE/p53 (-L)), cells were cultured for another 20 h. Finally, the wound gaps were imaged.

In Vitro Apoptosis Assay: HeLa cells were cultured as described above, incubated with TTC-L-M-4/DOPE/pGL-3 and TTC-L-M-4/DOPE/p53 for 4 h. After changing the

medium to fresh ones, cells were cultured for 20 h. For the PDT-treated group (TTC-L-M-4/DOPE/pGL-3 (+L)) and the combination treatment group (TTC-L-M-4/DOPE/p53 (+L)), the cells were subjected to light irradiation for 10 min irradiation at 24 h post-internalization. For the gene therapy group (TTC-L-M-4/DOPE/p53 (-L)), cells were cultured for another 24 h. The cell viability was determined at 48 h post transfection using the MTT assay. Furthermore, the Annexin V-FITC Apoptosis Detection Kit were used for detecting the apoptosis of HeLa cells treated with different formulations via flow cytometry following the manufacturer's instructions.

In Vivo Antitumor Assay: BALB/c nude mice (five weeks, female) were subcutaneously injected with 1×10^6 HeLa cells in the right flank to establish a HeLa tumor model. When the tumors reached 50-100 mm³, the mice were randomly divided into four groups (n = 5 per group) and subcutaneously injected around the tumor every other day with 100 µL of lipoplexes (7 µg DNA and 140 µM liposomes). Group 1 treated injection of PBS. Group 2 treated TTC-L-M-4/DOPE/pGL-3 and light irradiation (LED light, 450 nm, 10 mW/cm⁻²) for 30 min at 24 h post injection. Group 3 treated TTC-L-M-4/DOPE/p53 but without light irradiation. Group 4 treated TTC-L-M-4/DOPE/p53 and light irradiation (LED light, 450 nm, 10 mW/cm⁻²) for 30 min at 24 h post injection. Tumor sizes of each group were monitored every other day by a caliper (tumor volume = length × width × width/2). Relative tumor volumes were calculated as V/V₀ (V₀ was the tumor volume when the treatment was initiated). On the 14th day, all the mice were sacrificed and the tumor tissues were sectioned and collected for hematoxylin-eosin (H&E) staining.

2. Characterizations of TTC-L-M Derivatives

2.1. UV-Visible Spectra of the Compounds in Different Solvents

Figure S1. UV-vis spectra of TTC-L-M-1/2/3/4/5/6 in different solutions. Concentration: $10 \ \mu M$

Figure S2. Plot of Stokes shift (Δv) of TTC-L-M-1/2/3/4/5/6 versus Δf of their solutions. Concentration: 10 μ M; $\lambda ex = 426$ nm

Figure S3. (A-F) Fluorescence spectra of **TTC-L-M-1/2/3/4/5/6** in MeOH/DCM mixtures with different DCM fractions (f_w). Concentration: 10 μ M; $\lambda ex = 426$ nm.

Figure S4. (A) UV-vis spectra of **TTC-L-M** derivatives in H₂O. (B) Fluorescence spectra of **TTC-L-M** derivatives in H₂O. Concentration: $10 \ \mu$ M; $\lambda ex = 426 \ nm$.

Compound	solvent	λ _{ab} (nm)	λ _{em} (nm)	Stoke's shift (nm)	Ø F/%
	DCM	431	618	187	19.3
	THF	427	572	145	5.3
	EA	427	568	141	6.1
TTC-L- M-1	Acetone	426	610	184	7.6
	MeCN	423	624	201	8.4
	MeOH	432	620	188	3.6
	DMF	430	620	190	9.3
	Ether	422	572	150	1.8
	DCM	424	590	166	14.1
	THF	420	566	146	8.2
TTC-L- M-2	EA	417	564	147	5.3
	Acetone	416	606	190	8.8
	MeCN	412	624	212	8.1
	MeOH	421	628	207	2.6
	DCM	420	606	186	16.8
	THF	418	566	148	5
	EA	414	610	196	3.7
TTC-L- M-3	Acetone	420	607	187	6.5
	MeCN	421	622	201	6.6
	MeOH	423	630	207	3.7
	DMF	417	623	206	9.6

Table S1 Summarized photophysical data of TTC-L-M derivatives in Different Solvents

Compound	solvent	$\lambda_{ab}(nm)$	λ _{em} (nm)	Stoke's shift (nm)	Ø _F /%
	Ether	417	576	159	8.0
	DCM	423	592	169	9.5
	THF	422	564	142	4.3
TTC-L- M-4	EA	419	566	147	4.9
	Acetone	419	598	179	7.5
	MeCN	417	624	207	6.7
	MeOH	422	626	204	3.0
	DCM	441	642	201	5.6
	THF	437	620	183	4.8
	EA	432	610	178	7.1
TTC-L- M-5	Acetone	432	646	214	3.3
	MeCN	430	675	245	1.5
	MeOH	439	658	219	1.4
	DMF	447	662	215	1.8
	DCM	430	644	214	5.0
	THF	423	614	191	4.9
TTC-L-	Acetone	423	644	221	2.3
M-6	MeCN	421	658	237	1.1
	MeOH	427	698	271	0.7
	DMF	427	668	241	1.5

Abbreviation: $\lambda ab = absorption maximum$, $\lambda em = emission maximum$, $\Phi_F = fluorescence quantum yield, concentration: <math>10 \,\mu M$

	λ _{ab} (nm)	λ _{em} (nm)	Stoke's shift (nm)	Ø F/%
TTC-L-M-1	439	564	125	7.7
TTC-L-M-2	427	580	153	8.3
TTC-L-M-3	422	590	168	9.0
TTC-L-M-4	421	570	149	10.5
TTC-L-M-5	444	576	132	9.4
TTC-L-M-6	433	600	167	12.0

Table S2 Summarized photophysical data of TTC-L-M derivatives in H_2O

2.2 Micelle Formation

Figure S5. (A-F) Determination of critical micelle concentrations (CMCs) of TTC-L-M-1/2/3/4/5/6 in water. $\lambda ex = 426$ nm, 25 °C

2.3 SEM, DLS and Zeta Measurements

Figure S6. SEM images of TTC-L-M derivatives in the absence (A-F) and presence of DOPE (G-L). [TTC-L-M-1] = 35 μ M, [TTC-L-M-2] = 10 μ M, [TTC-L-M-3] = 15 μ M, [TTC-L-M-4] = 25 μ M, [TTC-L-M-5] = 30 μ M, [TTC-L-M-6] = 20 μ M; scale bars: 1 μ m.

Figure S7. DLS of **TTC-L-M** derivatives in the absence (A-F) and presence of DOPE (G-L). [**TTC-L-M-1**] = 35 μ M, [**TTC-L-M-2**] = 10 μ M, [**TTC-L-M-3**] = 15 μ M, [**TTC-L-M-4**] = 25 μ M, [**TTC-L-M-5**] = 30 μ M, [**TTC-L-M-6**] = 20 μ M

Figure S8. DLS of the lipoplexes of **TTC-L-M** derivatives/DOPE (1:2) with pUC18 DNA in Tris buffer (50 mM, pH 7.4). [**TTC-L-M-1**] = 35 μ M, [**TTC-L-M-2**] = 10 μ M, [**TTC-L-M-3**] = 15 μ M, [**TTC-L-M-4**] = 25 μ M, [**TTC-L-M-5**] = 30 μ M, [**TTC-L-M-6**] = 30 μ M.

Figure S9. Zeta potentials of pUC18 DNA complexes. [**TTC-L-M-1**] = 35 μ M, [**TTC-L-M-2**] = 10 μ M, [**TTC-L-M-3**] = 15 μ M, [**TTC-L-M-4**] = 25 μ M, [**TTC-L-M-5**] = 30 μ M, [**TTC-L-M-6**] = 20 μ M, [DNA] = 10 μ g/mL

Figure S10. The average diameters of **TTC-L-M-4**/DOPE/DNA in PBS (A) and 10% FBS (B) after incubation for different time. [**TTC-L-M-4**] = 15 μ M, [pDNA] = 10 μ g/mL, r.t.

Figure S11. Gel electropherogram assay of the DNA induced by different concentrations of TTC-L-M-1/2/3/4/5/6 in the absence of DOPE (A-F) in Tris-HCl (50 mM, pH 7.4). [DNA] = $10 \mu g/mL$, r.t.

2.4 EB Assay

Figure S12. Ethidium bromide exclusion measurements by TTC-L-M-1/2/3/4/5/6 in the presence of DOPE (1:2 ratio) in 5mM Tris-HCl/50mM NaCl (pH 7.4, 25 °C). [EB] = 20 μ M, [DNA] = 100 μ M.

Figure S13. (A-F) Ethidium bromide exclusion measurements by TTC-L-M-1/2/3/4/5/6 in the presence of DOPE (1:2 ratio) in 5mM Tris-HCl/50mM NaCl (pH 7.4, 25 °C). [EB] = 20 μ M, [DNA] = 100 μ M.

2.5 Docking Assays and Gel Electrophoresis

Figure S14. Molecular docking results of compounds and DNA. (PDB code 1BNA)

2.6 DNA Release

Figure S15. (A) Gel electrophoresis to measure the reversibility of DNA condensations caused by **TTC-L-M** derivatives/DOPE (1:2) in the presence of lipase. (B) Gel electrophoresis experiments at different pH values. [DNA] = 9 μ g/mL, [lipase] = 10 μ g/mL, [heparin] = 40 μ g/mL.

Figure S16. Gel electrophoresis to measure the reversibility of DNA condensations caused by **TTC-L-M-1**/DOPE (35 μ M), **TTC-L-M-2**/DOPE (15 μ M), **TTC-L-M-3**/DOPE (10 μ M), **TTC-L-M-4**/DOPE (15 μ M), **TTC-L-M-5**/DOPE (30 μ M) and **TTC-L-M-6**/DOPE (20 μ M) at heparin. [DNA] = 10 μ g/mL, heparin= 0 – 120 μ g/mL.

2.7 Cell Cytotoxicity

Figure S17. Cytotoxicity of HeLa cell lines cultured with TTC-L-M derivatives at different concentrations

Figure S18. Cytotoxicity of **TTC-L-M** derivatives/DOPE (1:2) at different concentrations cultured with HepG2 cell lines (A) and A549 cell lines (B).

	A549	HeLa	HepG2
TTC-L-M-1	53.02	77.85	77.19
TTC-L-M-2	54.74	73.51	122.69
TTC-L-M-3	55.59	117.96	126.87
TTC-L-M-4	62.95	131.91	>1000
TTC-L-M-5	37.57	101.93	143.09
TTC-L-M-6	201.67	84.32	343.18

Table S3 The calculated IC50 values of TTC-L-M derivatives.

2.8 Gene Transfection Assays

Figure S19. Luciferase gene expressions transfected by **TTC-L-M-1/2/3/4** in HeLa cell lines with Lipo2000 as control. [pGL-3] = $10 \ \mu g/mL$

Figure S20. CLSM images of transport process into HeLa cells after treated with **TTC-L-M-3**/DOPE (1:2) and Cy5-labeled DNA for 0.5 and 4h. The nuclei were stained with Hoechst 33342. (a) The nucleus (Blue channel). (b) **TTC-L-M-3**/DOPE (yellow channel). (c) Cy5-labeled DNA (red channel). (d) Bright field. (e) Merge of a, b, c, d. [**TTC-L-M-3**] = $25 \ \mu$ M, [Cy5-DNA] = $10 \ \mu$ g/mL, scale bar: $10 \ \mu$ m.

Figure S21. Luciferase expression induced by different concentrations of **TTC-L-M-**1/2/3/4-DOPE (1:2) in HepG2 cell lines (A) and A549 cell lines (B) with Lipo2000 as control. Data represent mean \pm SD (n = 3); *0.01 *** p < 0.001 analyzed by Student's t-test.

Figure S22. Luciferase expression induced by different concentrations of TTC-L-M-1/3/5/6 without or with DOPE in Hela cell lines with Lipo2000 as control.

Figure S23. Luciferase expression induced by different concentrations of **TTC-L-M-4-**DOPE (1:2) in HeLa cell lines under dark or LED light irradiation.

Table S4 Optimal luciferase expressions of **TTC-L-M-1/2/3/4** in HeLa cell lines (% of Lipo2000).

	TTC-L-M-1	TTC-L-M-2	TTC-L-M-3	TTC-L-M-4
HeLa	3.2	40.3	1.1	116.5

Table S5 Optimal luciferase expressions of **TTC-L-M-1/3/5/6** in HeLa cell lines (% of Lipo2000).

	TTC-L-M-1	TTC-L-M-3	TTC-L-M-5	TTC-L-M-6
HeLa	3.2	1.1	6.6	99.3

Table S6 Optimal luciferase expressions of **TTC-L-M** derivatives/DOPE in different cell lines (% of Lipo2000). The molar ratio of **TTC-L-M** derivatives and DOPE was 1:2

	A549	HepG2	HeLa
TTC-L-M-1	40	111	32
TTC-L-M-2	102	104	48
TTC-L-M-3	36	31	74
TTC-L-M-4	131	145	450
TTC-L-M-5			80
TTC-L-M-6			47

Figure S24. Green Fluorescent protein induced by different concentrations of **TTC-L-M** derivatives/DOPE (1:2) in A549 cell lines, HepG2 cell lines and HeLa cell lines with Lipo2000 as control.

Table S7 Optimal green fluorescent protein expressions of TTC-L-Mderivatives/DOPE in different cell lines (% of Lipo2000). The molar ratio of TTC-L-M derivatives and DOPE was 1:2

	A549	HepG2	HeLa
TTC-L-M-1	63	140	102
TTC-L-M-2	140	240	246
TTC-L-M-3	98	180	256
TTC-L-M-4	226	280	498
TTC-L-M-5	63	130	115
TTC-L-M-6	69	75	73

Table S8 Optimal luciferase expressions of **TTC-L-M-4**/DOPE in the media containing 10% serum in different cell lines (% of Lipo2000). The molar ratio of **TTC-L-M-4** and DOPE was 1:2

	HeLa	HepG2	A549
TTC-L-M-4	442	88	143

Figure S25. (A) Gel electropherogram assay of the siRNA induced by different concentrations of **TTC-L-M-4**/DOPE in Tris-HCl (50 mM, pH 7.4).

Table S9 Optimal gene silencing of **TTC-L-M**-4/DOPE in different cell lines (% of control). The molar ratio of **TTC-L-M**-4 and DOPE was 1:2

	HepG2 -Luc	A549-Luc
TTC-L-M-4	60	79
Lipo2000	42	48

2.9 Tracing the Delivery of DNA

Figure S26. Endo/lysosomal escape of **TTC-L-M-4**/DOPE/Cy5-DNA in HeLa cells for 0.5, 1, 2, and 4 h. The blue channel was LysoTracker-Blue (a). The yellow channel was **TTC-L-M-4**/DOPE (b). The red channel wad Cy5-labeled DNA (c). Bright field (d). Merge of a, b, c, d (e). [**TTC-L-M-4**] = $25 \,\mu$ M, [Cy5-DNA] = $10 \,\mu$ g/mL, scale bar: $10 \,\mu$ m.

Figure S27 TPEF spectra of TTC-L-M-4 (A) and TTC-L-M-5 (B) at different excitation energies at 840 nm. Linear relationship of logarithm laser power and logarithm-integrated intensity for TTC-L-M-4 (A) and TTC-L-M-5 (B) in water. Concentration: 10 μ M. Rhodamine B was used as the standard. 1 GM = 1 × 10⁻⁵⁰ cm⁴·s·molecule⁻¹·photon⁻¹.

Figure S28. Two-photon CLSM images of transport process into HeLa cells after treated with **TTC-L-M-4**/DOPE (1:2) and Cy5-labeled DNA for 0.5, 1, 2, 4, and 8 h. The nuclei were stained with Hoechst 33342. (a) The nucleus (Blue channel). (b) **TTC-L-M-4**/DOPE (yellow channel). (c) Cy5-labeled DNA (red channel). (d) Merge of a, b, c. [**TTC-L-M-4**] = 25 μ M, [Cy5-DNA] = 10 μ g/mL, scale bar: 10 μ m.

Figure S29. (A) The two-photon CLSM Z-stack scanning of the 3D HeLa-cell-based multicellular spheroids after 2 h of treatment with **TTC-L-M-4**. (B) 3D model showing the corresponding positions of CLSM Z stacking scanning in the tumor. [**TTC-L-M-4**] =10 μ M, λ_{ex} = 840 nm.

2.10 ROS and PDT

Figure S30. Absorption spectra of ABDA (50 μ M) in the absence (A) or presence (B) of **TTC-L-M-4** (B) /5 (C) and Ce6 (E) under LED light irradiation with different irradiation time. (D) Absorption spectra of Ce6 (10 μ M). (F) Decomposition rates of ABDA by **TTC-L-M-4/6** and Ce6 under LED light irradiation at pH 7.4, where A₀ and A are ABDA absorbance at 399 nm.

Figure S31. Absorption spectra of ABDA (50 μ M) in presence of TTC-L-M-4 with different concentration under LED light irradiation with different irradiation time.

Figure S32. Absorption spectra of ABDA (50 μ M) and TTC-L-M-4 (15 μ M).

Figure S33. (A) Intracellular ROS detection inside HeLa cells by DCFH-DA after treatment in the absence and presence of **TTC-L-M-4**/DOPE and LED light irradiation (a: $\lambda_{ex} = 450$ nm, b: $\lambda_{ex} = 880$ nm). (B) Viabilities of HeLa cells after treatment with **TTC-L-M-4**/DOPE for 4 h with and without LED light treatment for 10 min.

	Dark	LED light irradiation
TTC-L-M-4	131.91	43.5

Table S10 The calculated IC_{50} values of TTC-L-M-4/DOPE with and without LED light treatment for 10 min.

2.11 Western Blot

Figure S34. Western blot analysis of p53 in HeLa cells treated with TTC-L-M-4/DOPE/p53.

(A) 3h 18h 24h 6h **(B)** 11 Control 10 Lu He $\times 10^8$ Li He Lu 8 Ki Tu Sp 7 0 6 Tu

2.12 In vivo imaging

Figure S35. (A) In vivo imaging of HeLa tumor-bearing mice after subcutaneously injection of **TTC-L-M-4**/DOPE/pGL3 at different time points. (B) ex vivo biodistribution of organs and tumor at 24 h post-injection.

2.13 In vivo Antitumor Efficacy

Figure S36. (A) Tumor weight change of mice (n = 5). (B) Images of tumor tissues from different groups of tumors bearing mice on 14th day. (C) Representative photos of mice from different groups from 1th day to14th day.

Figure S37. H&E-stained tissues excised from mice. Scale bar: 100 μ m.

Figure S39 ¹³C NMR spectrum of 2 (101 MHz, CDCl₃).

Figure S41 ¹³C NMR spectrum of 3 (101 MHz, CDCl₃).

Figure S45¹³C NMR spectrum of 5 (101 MHz, CDCl₃).

Figure S47 ¹H NMR spectrum of TT-OC₈H₁₇ (400 MHz, CDCl₃)

Figure S49 ¹³C NMR spectrum of TTC-L-1 (101 MHz, CDCl₃).

Figure S51 ¹³C NMR spectrum of TTC-L-2 (151 MHz, CDCl₃).

Figure S55 ¹³C NMR spectrum of TTC-L-4 (151 MHz, CDCl₃).

Figure S57 ¹³C NMR spectrum of TTC-L-5 (101 MHz, CDCl₃).

Figure S59 ¹³C NMR spectrum of TTC-L-6 (101 MHz, CDCl₃).

Figure S61 ¹³C NMR spectrum of 6 (101 MHz, CDCl₃).

Figure S65 HR-MS spectrum of 7.

Figure S67 ¹³C NMR spectrum of 8 (101 MHz, CDCl₃).

Figure S68 HR-MS spectrum of 8.

Figure S71 HR-MS spectrum of 9.

Figure S73 ¹³C NMR spectrum of 10 (101 MHz, CDCl₃).

1.5

1.0

0.5

0.0

8.0

7.0

Figure S77 HR-MS spectrum of 11.

Figure S79¹³C NMR spectrum of TTC-L-M-1 (151 MHz, DMSO-*d*₆)

Figure S80 HR-MS spectrum of TTC-L-M-1.

Figure S81 ¹H NMR spectrum of TTC-L-M-2 (600 MHz, DMSO-*d*₆)

Figure S83 HR-MS spectrum of TTC-L-M-2.

Figure S85 ¹³C NMR spectrum of TTC-L-M-2 (151 MHz, CD₃OD)

Figure S86 HR-MS spectrum of TTC-L-M-3.

Figure S87 ¹H NMR spectrum of TTC-L-M-4 (600 MHz, DMSO-*d*₆)

Figure S89 HR-MS spectrum of TTC-L-M-4.

Figure S91 ¹³C NMR spectrum of TTC-L-M-5 (151 MHz, DMSO-d₆)

Figure S92 HR-MS spectrum of TTC-L-M-5.

Figure S93 ¹H NMR spectrum of TTC-L-M-6 (400 MHz, CD₃OD)

Figure S95 HR-MS spectrum of TTC-L-M-6.

References

(1) Jiang, Y.; Duan, Q.; Zheng, G.; Yang, L.; Zhang, J.; Wang, Y.; Zhang, H.; He, J.; Sun, H.; Ho, D. An ultra-sensitive and ratiometric fluorescent probe based on the DTBET process for Hg²⁺ detection and imaging applications. *Analyst* **2019**, *144*, 1353-1360.

(2) Xiong, J.; Zheng, T. J.; Shi, Y.; Wei, F.; Ma, S. C.; He, L.; Wang, S. C.; Liu, X. S.

Analysis of the fingerprint profile of bioactive constituents of traditional Chinese medicinal materials derived from animal bile using the HPLC-ELSD and chemometric methods: An application of a reference scaleplate. *J. Pharm. Biomed. Anal.* **2019**, 174, 50.

(3) Liu, B.; Liu, J. Methods and compositions for near infrared fluorescent nanodots with aggregation-induced emission characteristics. US2019358350A1, 2019-11-28.