Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2021

## **Supporting Information**

## 3D printing of tough double-network hydrogel and using it as scaffold to construct tissuelike hydrogel composite

Cong Du,<sup>1</sup> Jian Hu,<sup>2</sup> Xinyu Wu,<sup>1</sup> Huimin Shi,<sup>3</sup> Hai Chao Yu,<sup>1</sup> Jin Qian,<sup>4</sup> Jun Yin,<sup>3,\*</sup> Changyou Gao,<sup>1,\*</sup> Zi Liang Wu,<sup>1,\*</sup> Qiang Zheng<sup>1</sup>

<sup>1</sup> Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; <sup>2</sup> State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China; <sup>3</sup> State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China; ; <sup>4</sup> Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.

\*Corresponding authors. E-mail: junyin@zju.edu.cn (J.Y.), cygao@zju.edu.cn (C.G.), wuziliang@zju.edu.cn (Z.L.W.)



Fig. S1 Variations of storage modulus (G'), loss modulus (G''), and loss factor  $(\tan \delta)$  of the ink with  $C_{CG}$  of 30 mg/mL (a), 40 mg/mL (b), and 60 mg/mL (c) during the temperature sweep with a ramp rate of 5 °C/min, a frequency of 1 Hz, and a strain amplitude of 5%.



Fig. S2 (a) Viscosity versus the shear rate of the ink with  $C_{CG}$  of 50 mg/mL at 70 °C. (b) The complex viscosity at the gelation point (G' = G'') of the ink with different  $C_{CG}$ .



**Fig. S3** Micrographs of the cross section of fibers printed with  $C_{CG}$  of 60 mg/mL (a), 50 mg/mL (b), and 40 mg/mL (c).



Fig. S4 (a) Micrograph of the printed grid with fiber diameter of  $\sim$ 500 µm. (b) Digital photo of a cylindrical grid with 20 layers of printed gel fibers.



Fig. S5 Photo of printed artificial branched blood vessel with water flowing through it (a) and under cyclic compression (b).



**Fig. S6** (a) Micrograph of printed fibers with various diameters. (b-d) Tensile stress-strain curves of SN gel fiber (b), DN gel fiber (c), and DN gel fiber reinforced by  $Zr^{4+}$  ions (d) with various diameters.



**Fig. S7** Tensile stress-strain curves (a,c,e) and corresponding mechanical properties (b,d,f) of the fibers printed with  $C_{CG}$  of 60 mg/mL (a,b), 50 mg/mL (c,d), and 40 mg/mL (e,f) and reinforced by soaking in solution with different concentration of  $Zr^{4+}$  ion,  $C_{Zr4+}$ .



**Fig. S8** Variations of the loading force during the cyclic compression of a fibrin gel (a) and  $Zr^{4+}$ -reinforced DN gel scaffold (b) with a maximum compression strain of 40%.

| Parameter                    | Value |
|------------------------------|-------|
| Extrusion pressure (kPa)     | 40    |
| Nozzle moving speed (mm/min) | 600   |
| Nozzle inner diameter (mm)   | 0.4   |
| Substrate temperature (°C)   | 20    |

**Table S1** Printing parameters for the fabrication of printed hydrogel constructs.

**Movie S1.** Liquid flow through the printed artificial blood vessel. The printed artificial vessel is connected with a silicon tube, and 0.2 wt% neutral red is added to water for better visualization.

**Movie S2.** Cyclic compression of the printed artificial blood vessel. The printed artificial vessel is compressed with a maximum strain of 50% and constant speed of 50 mm/min.