Supporting Information

High-Sensitivity Fluorescence Detection for lung cancer CYFRA 21-1 DNA based on Accumulative Hybridization of Quantum Dots

Ling Yang,^{a,b} Ping'an Ma,^{a,b} Xiaorui Chen, *,^a Ziyong Cheng,*,^{a,b} and Jun Lin*,^{a,b}

^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. E-mail: jlin@ciac.ac.cn, zycheng@ciac.ac.cn

^b University of Science and Technology of China, Hefei, 230026, P. R. China

*E-mail: jlin@ciac.ac.cn; zycheng@ciac.ac.cn

Oligonucleotide sequences used in CYFRA21-1 detection.	
Name	Sequence (5' to 3')
Target	CGCCCCTGACACCATTCCTCCCTTC
Probe A	NH ₂ -TTTTTTCAGCGGAAGGGAGGAATGGTGTCAGGGGCG GAACGTACACGCTGA
Probe B	TCGTCATGATCACTTCGGTCAGCGTGTACGTTGACTGACG ATTTTT- SH
Probe C	CCGAAGTGATCATGACGAGTCAACGTACACGCTGACTTCG GTTTTT- SH

Table 1

Figure S1. XPS spectra for survey scans of (a) $AgInS_2$ and $AgInS_2@ZnS QDs$, (b) Fe_3O_4 and Fe_3O_4 -NH₂. In the left spectrum, in addition to the Ag, In, and S peaks, two new peaks attributed to Zn appear in the $AgInS_2@ZnS$ spectrum compared to the spectrum of $AgInS_2$. Similarly, in the right spectrum, the peak at 392 eV is observed in the spectrum of Fe_3O_4 -NH₂ because the surface of Fe_3O_4 is modified with amino groups.

Figure S2. (a) X-ray diffractogram of Fe_3O_4 . It shows that there are five main peaks centered at 30.1, 35.5, 43.1, 57.1 and 62.6° that match with the magnetite Fe_3O_4 standard card. (b) The magnetic adsorption diagram of Fe_3O_4 .

Figure S3. Images of polyacrylamide gel electrophoresis migration. The bands 1, 2, 3, 4 represent target DNA, hairpin A, hairpin B and hairpin C, respectively. The band 5 means that target DNA and hairpin A are mixed together, it can be seen that the band appears at a higher position compared to band 1 and 2, which shows that target DNA can open hairpin A. The band 6 and 7 means that target DNA mixes with hairpin B and C, respectively, which shows that target DNA can not open hairpin B and C directly. The band 8 means that target DNA mixes with hairpin A and B. The band 9 means that target DNA mixes with hairpin A, B and C together, the band in the uppermost position

shows that they can carry out chain polymerization in an orderly manner.

Figure S4. Elemental mapping images of Fe₃O₄ surface connected QDs

Figure S5. (a) and (b) The optimal concentration of AIZS modified with hairpin B/C. (c) and (d) The optimal concentration of Fe_3O_4 modified with hairpin A. (e) and (f) The optimal reaction time of hybridization chain reaction.