Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information (ESI) for

Coumarin-based fluorescent probe with 4-phenylselenium as the active site for multi-channel discrimination of biothiols

Xiang-Gen Chen, Yuan Mei and Qin-Hua Song*

Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R.

China

E-mail address: qhsong@ustc.edu.cn

Contents:

1. Summary of coumarin-based fluorescent probes for the detection of biothiols	S2-4
2. UV/Vis absorption spectral response toward biothiols	S5
3. Spectral response toward Hcy upon excitation at 455 nm	S5
4. Concentration dependent absorption spectral response toward biothiols	S5
5. Spectral response toward NAC	S6
6. The evidence of sensing products for probe with different biothiol	S6-10
7. Time-dependent spectral response of probe toward H ₂ S	S11
8. Time-dependent spectral response of probe toward the mixture of biothiols	S11
9. pH effect studies and MTT assay	S12
10. Copies of NMR spectra for related compounds	S13-16

Fluorescent probes	Test condition	Distinguish detection	Emission wavelength /nm	Response time /min	LOD /nM	References
	PBS buffer (pH 7.4, 10 mM, 1 mM CTAB)	Cys GSH	420 512	60 60	/ 50	J. Am. Chem. Soc., 2014, 136 , 574-577
	PBS buffer (pH 7.4, 10 mM, 25% DMSO)	GSH	550	/	270	<i>Chem. Sci.</i> , 2015, 6 , 5435–5439
СНО	PBS buffer (pH 7.4,)	Cys Hcy	470 470	34 60	180 90	Anal. Chim. Acta., 2015, 900 , 103-110
		GSH	546	40	80	
	PBS buffer (pH 7.4, 10 mM, 30% DMF)	H ₂ S GSH	564 517	6 6	42 87	<i>Chem. Commun.</i> , 2016, 52 , 4628-4631
	PBS buffer (pH 7.4, 10 mM, 30% CH ₃ CN)	Cys GSH	498 560	40	190 430	Biosens. Bioelectron., 2017, 90 , 117
CI NUCCHO CHO	PBS buffer (pH 7.4, 10 mM, 20% DMSO)	Cys Hcy	480 542	60 60	1990 620	<i>Chem. Asian. J.</i> , 2017, 12 , 2098-2103
	PBS buffer (pH 7.4, 10 mM, 50% CH ₃ CN)	H ₂ S GSH	490 505	30 7	75 280	Analyst., 2018, 143 , 440-448
	PBS buffer (10 mM, pH 7.4, 60% DMSO)	Cys Hcy GSH	457 559 529	4 15 5	0.5 3.6 6.9	Angew. Chem. Int. Ed., 2018, 57 , 4991-4994

 Table S1. Summary of coumarin-based fluorescent probes for the detection of biothiols.

	PBS buffer (pH 7.4, 10 mM, 1% DMSO	Cys	475	25	14	<i>New. J. Chem.</i> , 2018, 42 , 12615-12620
		Нсу	475	55	81	
		GSH	575	50	97	
Se CHO	HEDES (-1174 10 M 100)	Cys	510	15	17.0	A
	HEPES (pH /.4, 10 mM, 10%	Нсу	510	/	/	Anal. Chem., 2018, 90,
	DMSO)	GSH	590	30	1270	2648-2654
EIO2C						
	PBS buffer (pH 7.4, 10 mM,	Biothiols	469	10	Cvs: 210/GSH: 170	
		HaS	508	60	420	Chem. Commun., 2019,
	20% DMSO)	H ₂ S ₂	576	15	60	55 , 8130-8133
				10		
	PBS buffer (10 mM pH 7.4	Cys	503	15	0.2	Angew. Chem. Int. Ed., 2019, 58 , 4557-4561
	40% DMSO)	Нсу	467	15	0.7	
	+0/0 DNISO)	GSH	568	15	1.0	
	PBS buffer (pH 7.4, 10 mM)	Cys	489/564/600	60	2965	Anal Chem 2019 91
	20% CH ₂ OH)	Нсу	489/564/600	90	6140	1472-1478
	20% CH ₃ OH)	GSH	489/564/600	80	6847	14/2-14/0
so ₃		Cys	498/573/612	60	2200	
	PBS buffer (pH 7.4, 10 mM)	Hey	498/573/612	90	2080	J. Mater. Chem. B.,
		GSH	498/573/612	70	1890	2019, 7 , 7723-7728
		0011	470/375/012	70	1070	
CI CO2Et	PBS buffer (10 mM, pH 7.4, 30% DMSO)	Cys	462		30	Talanta 2020 219
		Нсу	449	15	60	121353
		GSH	547		200	121355
	PBS buffer (pH 7.4, 10 mM, 5% EtOH)	Cvs	495	25	106	
		Hcv	495	25	82	Anal. Chem., 2021, 93,
		GSH	565	20	57	2244-2253
			2.00			

PBS buffer (10 mM, pH 7.4, 40% DMSO)	Cys Hcy GSH	465 542 533	2 15 2	3.0 39.5 9.7	This work
---	-------------------	-------------------	--------------	--------------------	-----------

"/" No available data.

2. Time-dependent UV/Vis absorption spectral response of probe toward biothiols

Fig. S1 Time-dependent UV/Vis absorption spectra of 10 μ M CouSePh upon addition of (a) 10 μ M Cys, (b) 10 μ M Hcy or (c) 10 μ M GSH in PBS buffer (10 mM, pH 7.4, 40% DMSO). Inset: time-dependent absorbance varies at 378/492 nm from (a) Cys, 455/492 nm from (b) Hcy or 450/492 nm from (c) GSH.

3. Time-dependent fluorescence spectral response of probe toward Hcy upon excitation at 455 nm

Fig. S2 Time-dependent fluorescence spectra of 10 μ M probe CouSePh upon addition of 10 μ M Hcy in PBS buffer (10 mM, pH 7.4, 40% DMSO), $\lambda_{ex} = 455$ nm.

4. The concentration dependent UV/Vis absorption spectral response of probe toward biothiols

Fig. S3 UV/Vis absorption spectra of 10 μ M probe CouSePh upon addition of increasing concentrations of (a) 0-40 μ M Cys, (b) 0-70 μ M Hcy or (c) 0-30 μ M GSH in PBS buffer (10 mM, pH 7.4, 40% DMSO). Insets: photos of 10 μ M probe solution before (A) and after (B/C/D) addition of corresponding biothiol under room light.

5. The spectral response of probe toward NAC

Fig. S4 Time-dependent (a) UV/Vis absorption and (b) fluorescence spectra of 10 μ M probe CouSePh upon addition of 10 μ M NAC in PBS buffer (10 mM, pH 7.4, 40% DMSO), λ_{ex} =492 nm.

Fig. S5 The partial ¹H NMR spectra of probe CouSePh in DMSO-*d*₆ upon addition of increasing Cys.

Fig. S7 The high-resolution mass spectrum (HRMS) for the mixture of probe CouSePh with Cys.

Fig. S8 The high-resolution mass spectrum (HRMS) for the mixture of probe CouSePh with Hcy.

Fig. S9 The high-resolution mass spectrum (HRMS) for the mixture of probe CouSePh with GSH.

Fig. S10 The infrared spectra of (a) probe CouSePh and (b) sensing product Cou-Hcy.

Fig. S11 Normalized (a) UV/Vis absorption and (b) fluorescence spectra of 10 μ M probe CouSePh upon addition of Hcy and 10 μ M sensing product Cou-Hcy in PBS buffer (10 mM, pH 7.4, 40% DMSO), λ_{ex} =455 nm.

Fig. S13 The 13 C NMR spectrum of sensing product Cou-Hcy (CDCl₃, 125 MHz).

Fig. S14 The ¹³C-DEPT 135 NMR spectrum of sensing product Cou-Hcy.

Fig. S15 The ¹H-¹³C HMBC NMR spectrum of the sensing product Cou-Hcy.

7. Time-dependent spectral response of probe toward H₂S

Fig. S16 Time-dependent (a) UV/Vis absorption and (b) fluorescence spectra of 10 μ M probe CouSePh upon addition of 10 μ M Na₂S in PBS buffer (10 mM, pH 7.4, 40% DMSO), $\lambda_{ex} = 450$ nm.

Fig. S17 Time-dependent fluorescence spectra of 10 μ M probe CouSePh upon addition of the mixture of Cys/Hcy/GSH: (a/b) 10 μ M/10 μ M/10

9. pH effect studies and MTT assay

Fig. S18 The effect of pH on the fluorescence intensity of 10 μ M probe CouSePh in the absence or presence of (a) Cys (λ_{ex} =378 nm), (b) Hcy (λ_{ex} =455 nm) or (c) GSH (λ_{ex} =450 nm) in PBS buffer (10 mM, 40% DMSO).

Fig. S19 MTT assay of HepG2 cells incubated with CouSePh medium (0-20 µM) for 24 h.

10. Copies of NMR spectra for related compounds

¹H NMR spectrum of compound **1** (CDCl₃, 400 MHz).

S13

¹H NMR spectrum of compound **2** (CDCl₃, 400 MHz)

¹H NMR spectrum of probe CouSePh (CDCl₃, 400 MHz)

High resolution mass spectrum (HRMS) of probe CouSePh