Supporting Information

Rational design of large Stokes shift xanthenebenzothiozolium dyad for probing cysteine in mitochondria

Songtao Cai, ^{d,†} Qiuchen Liu, ^{b,c,†} Chang Liu, ^b Song He, ^b Liancheng Zhao, ^{b,c} Xianshun Zeng ^{*,b,c} and Jin Gong ^{*,a,b}

^a School of Pharmacy, Weifang Medical University, Weifang, 261053, P. R. China

^b Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China

^c School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China

^d Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, P. R. China.

[†] These authors contributed equally to this work.

*E-mail: xshzeng@tjut.edu.cn (X. Zeng) and gongjin@wfmc.deu.cn (J. Gong)

Contents

Materials and instruments	S2
Synthesis of PhCy	S2
Time-dependent fluorescence intensity of PhCy-OH	
HRMS of PhCy-Cys reaction with Cys	S3
Comparison of PhCy-Cys with the reported Cys probes	S3-S4
Absorption spectra of PhCy-Cys upon addition of analytes	
pH-dependent fluorescence changes of PhCy-Cys	S5
MTT assay	S6
¹ H, ¹³ C NMR spectra and HRMS	S6-S10

Materials and instruments

All reagents and organic solvents used in this work were analytical grade and were purchased from Aladdin Ltd, and were used directly unless otherwise stated. The silica gel (200-400 mesh) used in the column chromatography was purchased from Qingdao Ocean Chemicals. Spectra were measured by using UV-2550 UV/Vis spectrophotometer (Hitachi Japan) and F-4600 fluorescence spectrophotometer (Hitachi Japan). The chemical structures were characterized by nuclear magnetic resonance (NMR) spectra (Bruker AVANCE III 400 M/300 M) and high resolution mass spectra (Agilent 6510 Q-TOF LC/MS instrument (Agilent Technologies, Palo Alto, CA)), respectively. The pH was examined by FE 20/EL 20PH meter (Mettler-Toledo Instruments (Shanghai) CO., Ltd.). Cell imaging was carried out by the Olympus FV 1000-IX81 laser scanning confocal microscope.

Synthesis of PhCy:

The potassium acetate (1.0 g, 10 mmol), 2-chloro-1-formyl-3-(hydroxymethylene)cyclohex-1-ene 4 (0.85 g, 5 mmol) and 1-ethyl-2,3,3-trimethylbenzoindoleninium tetrafluoroborate (3.25 g, 10 mmol) was added to acetic anhydride (30 mL), then the solution was heated to 70 °C for 1 h. After cooling to room temperature, the solvent was evaporated, and the residue was purified by silica gel flash column to obtain brick red solid **PhCy** (2.5 g, 71%). ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.47 (d, *J* = 14.1 Hz, 2H), 8.14 (d, *J* = 8.5 Hz, 2H), 8.03 – 7.92 (m, 4H), 7.63 (t, *J* = 7.6 Hz, 2H), 7.49 (t, *J* = 8.2 Hz, 4H), 6.27 (d, *J* = 14.2 Hz, 2H), 4.40 (q, *J* = 6.8 Hz, 4H), 2.79 (t, *J* = 5.6 Hz, 4H), 2.03 (s, 12H), 1.53 (t, *J* = 7.0 Hz, 6H).

Fig. S1 Time-dependent fluorescence intensity of PhCy-OH in PBS buffer (10 mM,

pH 7.4, containing 20% EtOH). $\lambda_{ex} = 730$ nm, slit = 10/10 nm.

Fig. S2 HRMS spectrum of PhCy-Cys recorded after reaction with Cys.

No.	Structures	λ _{em} /λ _{abs} (nm)	LOD (<i>nM</i>)	Time (<i>min</i>)	Ref.
1		710/396	500	120	Front. Chem. 2019, 7, 32
2	LoCLOC , , , , , , , , ,	674/530	960		Talanta 2019, 204, 747–752

Table S1.	Comparisons	of PhCy-C	ys with the re	ported Cys probes
-----------	-------------	-----------	----------------	-------------------

3	NC_CN	700/557	200	70	ACS Sens. 2016, 1, 882–887
4		725/578	2965	60	Anal. Chem. 2019, 91, 1472–1478
5	o to to ho to	443/340	160	14	Anal. Chem. 2019, 91, 8591– 8594.
6		690/612	180	5	Biosensor. Bioelector. 2015, 68, 316–321
7	NO2	794/750	90	30	Sens. Actuators, B Chem. 2019, 282, 69–77
8		750/650	126	60	RSC Adv. 2014, 4, 8360–8364
9		660/450	79	60	Talanta 2021, 223, 121758
10		756/588	1010	8	Dye. Pigment. 2021, 186, 109015
11	Lotto CN	675/584	200	10	Dye. Pigment. 2017, 146, 103- 111
12		803/735	166	10	This work

Fig. S3 Absorption spectra of PhCy-Cys upon addition of analytes (100 μ M): Cys, Hcy, GSH (5.4 mM), H₂S, Gly, Ser, Met, Val, Leu, Tyr, His, Trp, Arg, Ala, Glu, Pro, Thr, and Phe.

Fig. S4 pH-dependent fluorescence changes of PhCy-Cys in the absence/presence of Cys (100 μ M). The conditions: PBS buffer (10 mM, pH 7.4, containing 50% EtOH), $\lambda_{ex} = 730$ nm, slit = 10/10 nm.

Fig. S5 MTT assay for the survival rate of HeLa cells treated with **PhCy-Cys** for 24 h. Error bars represent the standard deviations of 5 trials.

Fig. S6 ¹H NMR spectra of compound PhCy in CDCl₃.

Fig. S7 ¹H NMR spectra of compound PhCy-OH in DMSO- d_6 .

Fig. S8 ¹³C NMR spectra of compound PhCy-OH in DMSO- d_6 .

Fig. S9. HRMS spectrum of compound PhCy-OH.

Fig. S10 ¹H NMR spectra of compound PhCy-Cys in DMSO-*d*₆.

Fig. S11 ¹³C NMR spectra of compound PhCy-Cys in DMSO- d_6 .

Fig. S12. HPLC of compound PhCy-Cys.

Fig. S13 HRMS spectra of compound PhCy-Cys.