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All reagents and organic solvents used in this work were analytical grade and were purchased 

from Aladdin Ltd, and were used directly unless otherwise stated. The silica gel (200-400 mesh) 

used in the column chromatography was purchased from Qingdao Ocean Chemicals. Spectra were 

measured by using UV-2550 UV/Vis spectrophotometer (Hitachi Japan) and F-4600 fluorescence 

spectrophotometer (Hitachi Japan). The chemical structures were characterized by nuclear 

magnetic resonance (NMR) spectra (Bruker AVANCE III 400 M/300 M) and high resolution 

mass spectra (Agilent 6510 Q-TOF LC/MS instrument (Agilent Technologies, Palo Alto, CA)), 

respectively. The pH was examined by FE 20/EL 20PH meter (Mettler-Toledo Instruments 

(Shanghai) CO., Ltd.). Cell imaging was carried out by the Olympus FV 1000-IX81 laser scanning 

confocal microscope. 

Synthesis of PhCy:

The potassium acetate (1.0 g, 10 mmol), 2-chloro-1-formyl-3-(hydroxymethylene)cyclohex-1-ene 

4 (0.85 g, 5 mmol) and 1-ethyl-2,3,3-trimethylbenzoindoleninium tetrafluoroborate (3.25 g, 10 

mmol) was added to acetic anhydride (30 mL), then the solution was heated to 70 °C for 1 h. After 

cooling to room temperature, the solvent was evaporated, and the residue was purified by silica 

gel flash column to obtain brick red solid PhCy (2.5 g, 71%). 1H NMR (400 MHz, CDCl3, ppm): 

δ 8.47 (d, J = 14.1 Hz, 2H), 8.14 (d, J = 8.5 Hz, 2H), 8.03 – 7.92 (m, 4H), 7.63 (t, J = 7.6 Hz, 2H), 

7.49 (t, J = 8.2 Hz, 4H), 6.27 (d, J = 14.2 Hz, 2H), 4.40 (q, J = 6.8 Hz, 4H), 2.79 (t, J = 5.6 Hz, 

4H), 2.03 (s, 12H), 1.53 (t, J = 7.0 Hz, 6H).
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Fig. S1 Time-dependent fluorescence intensity of PhCy-OH in PBS buffer (10 mM, 

pH 7.4, containing 20% EtOH). λex = 730 nm, slit = 10/10 nm. 

Fig. S2 HRMS spectrum of PhCy-Cys recorded after reaction with Cys.

Table S1. Comparisons of PhCy-Cys with the reported Cys probes.

No. Structures
λem/λabs 

(nm)

LOD 

(nM)

Time 

(min)
Ref.

1 710/396 500 120 Front. Chem. 2019, 7, 32
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Anal. Chem. 2019, 91, 
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Anal. Chem. 2019, 91, 8591–

8594.
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O

690/612 180 5
Biosensor. Bioelector. 2015, 

68, 316–321

7 794/750 90 30
Sens. Actuators, B Chem. 2019, 
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8 750/650 126 60 RSC Adv. 2014, 4, 8360–8364
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Fig. S3 Absorption spectra of PhCy-Cys upon addition of analytes (100 μM): Cys, 

Hcy, GSH (5.4 mM), H2S, Gly, Ser, Met, Val, Leu, Tyr, His, Trp, Arg, Ala, Glu, Pro, 

Thr, and Phe.

Fig. S4 pH-dependent fluorescence changes of PhCy-Cys in the absence/presence of 

Cys (100 μM). The conditions: PBS buffer (10 mM, pH 7.4, containing 50% EtOH), 

λex = 730 nm, slit = 10/10 nm.
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Fig. S5 MTT assay for the survival rate of HeLa cells treated with PhCy-Cys for 24 h. 

Error bars represent the standard deviations of 5 trials. 

Fig. S6 1H NMR spectra of compound PhCy in CDCl3.



S7

Fig. S7 1H NMR spectra of compound PhCy-OH in DMSO-d6.

Fig. S8 13C NMR spectra of compound PhCy-OH in DMSO-d6.
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Fig. S9. HRMS spectrum of compound PhCy-OH.

Fig. S10 1H NMR spectra of compound PhCy-Cys in DMSO-d6.
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 Fig. S11 13C NMR spectra of compound PhCy-Cys in DMSO-d6.

Fig. S12. HPLC of compound PhCy-Cys.
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Fig. S13 HRMS spectra of compound PhCy-Cys.


