Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2022

## **Supporting Information**

## NIR-II-responsive AuNRs@SiO<sub>2</sub>-RB@MnO<sub>2</sub> nanotheranostic for multimode

## imaging-guided CDT/PTT synergistic cancer therapy

Changchun Wen<sup>‡</sup>, Xiaolu Guo<sup>‡</sup>, Cunji Gao, Zhongkai Zhu, Nianqi Meng, Xing-Can Shen and Hong Liang\*

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy Sciences, Guangxi Normal University, Guilin, 541004, P. R. China

E-mail: hliang@mailbox.gxnu.edu.cn



Figure S1. The energy dispersive spectroscopy (EDS) of AuNRs@SiO<sub>2</sub>-RB@MnO<sub>2</sub>.



Figure S2. Zeta potentials of the AuNRs@SiO<sub>2</sub>-RB@MnO<sub>2</sub>.



Figure S3. Raman spectra of AuNRs@SiO<sub>2</sub>-RB, AuNRs@SiO<sub>2</sub>-RB@MnO<sub>2</sub> and AuNRs@SiO<sub>2</sub>-RB@MnO<sub>2</sub>+GSH.



**Figure S4**. Bar plot showing the remaining percent of MB after different treatments: (a) untreated, (b) AuNRs@SiO<sub>2</sub>-RB@MnO<sub>2</sub> + H<sub>2</sub>O<sub>2</sub>, (c) 1 mM GSH + H<sub>2</sub>O<sub>2</sub>, (d)  $Mn^{2+}$  + H<sub>2</sub>O<sub>2</sub>, (e) AuNRs@SiO<sub>2</sub>-RB@MnO<sub>2</sub> NPs + H<sub>2</sub>O<sub>2</sub> + 0.5 mM GSH, (f) AuNRs@SiO<sub>2</sub>-RB@MnO<sub>2</sub> NPs + H<sub>2</sub>O<sub>2</sub> + 1 mM GSH, (g) AuNRs@SiO<sub>2</sub>-RB@MnO<sub>2</sub> NPs + H<sub>2</sub>O<sub>2</sub> + 5 mM GSH. Reaction buffer: 25 mM NaHCO<sub>3</sub>, 10 mM H<sub>2</sub>O<sub>2</sub>, 0.5 mM MnCl<sub>2</sub>.



Figure S5. UV/Vis absorption intensity change curve at 665 nm of MB degradation by  $H_2O_2$  plus GSH-treated AuNRs@SiO<sub>2</sub>-RB@MnO<sub>2</sub> (simplified as MnO<sub>2</sub>) with different time.



Figure S6. Photoacoustic spectra of 50  $\mu$ g·mL<sup>-1</sup> AuNRs@SiO<sub>2</sub>-RB@MnO<sub>2</sub>.



**Figure S7**. Bright-field and fluorescence images of ROS generation in L929 cells after treated by culture medium included AuNRs@SiO<sub>2</sub>-RB@MnO<sub>2</sub> for 6h. The green intracellular fluorescence originated from the DCF (the oxidation product of DCFH-DA). Scale bars:100 μm.



**Figure S8**. In vitro dark cytotoxicity and photoinduced cell killing from various AuNRs@SiO<sub>2</sub>-RB@MnO<sub>2</sub> concentrations from 0 to 100  $\mu$ g·mL<sup>-1</sup> of Au, respectively. The irradiation was carried out using the 1064 nm laser (1.0 W·cm<sup>-2</sup>, 10 min).



**Figure S9**. Calcein-AM/PI double staining of L929/4T1 cells subjected to treatments without the AuNRs@SiO<sub>2</sub>-RB@MnO<sub>2</sub>. Scale bars:100 μm.



**Figure S10**. Biological distribution of AuNRs@SiO<sub>2</sub>-RB@MnO<sub>2</sub> in main organs of mice at different time after injection.



Figure S11. Biodistribution of Mn at different time points in main organs tissue of Balb/c mice after injection administration of  $[Mn^{2+}]$  (100 µL, 0.2 mg mL<sup>-1</sup>).