Tailoring Nonlinear Absorption of Fluorescent Dyes by Substitution at a Boron Center †

ELECTRONIC SUPPLEMENTARY INFORMATION

Borys Ośmiałowski,^{*,a} Elizaveta F. Petrusevich,^b Katarzyna C. Nawrot,^c Bartłomiej K. Paszkiewicz,^d Marcin Nyk,^c Judyta Zielak,^a Beata Jędrzejewska,^e Josep M. Luis,^f Denis Jacquemin,^{*,g} Robert Zaleśny^{*,b}

^a Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, PL-87100 Toruń, Poland
^b Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
^c Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
^d Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
^e Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, PL-85326, Bydgoszcz, Poland

^f Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17071 Girona, Catalonia, Spain

⁸ Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France

*E-mail: Borys.Osmialowski@umk.pl (B.O.), Denis.Jacquemin@univ-nantes.fr (D.J.), Robert.Zalesny@pwr.edu.pl (R.Z.)

Figure S1: The absorption spectra for **1-6** in chloroform.

Figure S2: The absorption spectra for **2** in DMSO/water mixture (total volume is 10 ml, the amount of water is given in the legend).

Figure S3: The absorption spectra for **4** in DMSO/water mixture (total volume is 10 ml, the amount of water is given in the legend).

Figure S4: The absorption spectra for **5** in DMSO/water mixture (total volume is 10 ml, the amount of water is given in the legend).

Figure S5: The fluorescence spectra for **2** in DMSO/water mixture (total volume is 10 ml, the amount of water is given in the legend).

Figure S6: The fluorescence spectra for **4** in DMSO/water mixture (total volume is 10 ml, the amount of water is given in the legend).

Figure S7: The fluorescence spectra for **5** in DMSO/water mixture (total volume is 10 ml, the amount of water is given in the legend).

Figure S8: The ¹H NMR spectrum of 4-[(2Z,7Z)-7-[4-(dimethylamino)phenyl]-5-phenyl-4,6-dioxa-2,8,13-triaza-5-borabicyclo[7.3.1]trideca-1(13),2,7,9,11-pentaen-3-yl]-N,N-dimethylaniline.

Figure S9: The ¹³C NMR spectrum of 4-[(2Z,7Z)-7-[4-(dimethylamino)phenyl]-5-phenyl-4,6-dioxa-2,8,13-triaza-5-borabicyclo[7.3.1]trideca-1(13),2,7,9,11-pentaen-3-yl]-N,N-dimethylaniline.

Figure S10: The ¹H NMR spectrum of 4-[(2Z,7Z)-3,7-bis[4-(dimethylamino)phenyl]-4,6-dioxa-2,8,13-triaza-5-borabicyclo[7.3.1]trideca-1(13),2,7,9,11-pentaen-5-yl]-N,N-dimethylaniline.

Figure S11: The ¹³C NMR spectrum of 4-[(2Z,7Z)-3,7-bis[4-(dimethylamino)phenyl]-4,6-dioxa-2,8,13-triaza-5-borabicyclo[7.3.1]trideca-1(13),2,7,9,11-pentaen-5-yl]-N,N-dimethylaniline.

Figure S12: Representative relation between transmittance through **2** and distance to focal point (z-scan measurements) upon excitation at 725 nm.

Figure S13: Representative relation between transmittance through **4** and distance to focal point (z-scan measurements) upon excitation at 725 nm.

Figure S14: Representative relation between transmittance through **5** and distance to focal point (z-scan measurements) upon excitation at 725 nm.

Figure S15: Representative relation between transmittance through **6** and distance to focal point (z-scan measurements) upon excitation at 800 nm.

compound	$s_0 \!\rightarrow\! s_1$			$S_0 \!\rightarrow\! S_2$				$S_0 \!\rightarrow\! S_3$		
	λ	f	$\delta^{2\text{PA}}/10^3$	λ	f	$\delta^{2\text{PA}}/10^3$	λ	f	$\delta^{2\text{PA}}/10^3$	
1	357	0.36	0.0	277	0.48	0.2	271	0.01	0.1	
2	391	0.96	7.7	330	0.67	84.7	306	0.47	24.9	
3	373	0.11	0.4	344	0.27	0.2	313	0.09	3.9	
4	389	0.89	6.6	343	0.19	13.6	327	0.59	67.1	
5	385	1.08	8.7	327	0.74	84.9	302	0.39	23.6	
6	376	0.88	26.2	315	0.41	25.8	288	0.07	30.4	

Table S1: Summary of electronic-structure calculations at the CC2/cc-pVDZ level of theory: one-photon excitation wavelengths (λ, nm) , oscillator strengths (f) and two-photon transition strengths (δ^{2PA}, au) .