Supplementary Information

Silver alloy based metal matrix composites: A potential

material for highly reliable transparent thin film heater

Joohee Jang,^{a,b} and Ji-Won Choi ^{a, b, *}

^a Electronic Materials Research Center, Korea Institute of Science and Technology(KIST),

Seoul 02792, Republic of Korea

^b Division of Nano & Information Technology, KIST-School, University of Science and Technology(UST), Daejeon 34113, Republic of Korea

*Corresponding author: jwchoi@kist.re.kr

Fig. S1. Schematic of the on-axis RF sputtering system.

Fig. S2. (a) Thickness and (b) the sheet resistance of Ag single thin film and Ag-Ti_y continuous composition thin film deposited by CCS method.

Fig. S3 (a) Thickness and (b) sheet resistance of $AgTi_{0.0007}$ single thin film and $AgTi_{0.0007}$ -Cr_z continuous composition thin films deposited by CCS method.

Fig. S4 The optical simulation data of $Zn-SnO_x/ATC/Zn-SnO_x$ multilayers when the thickness of metal layer was fixed as 10 nm.

Fig. S5 XPS depth profiling analysis of the Ag 3d peaks of (a) $Zn-SnO_x/Ag/Zn-SnO_x$ multilayer and of (b) $Zn-SnO_x/ATC/Zn-SnO_x$ multilayer before the constant temperature–humidity test. XPS spectra of the Ag 3d binding energy of the interface of (c) Ag/ZTO (d) ATC/ZTO at Ar⁺ etching time of 120 s

Fig. S6. The temperature of the $Zn-SnO_x/ATC/Zn-SnO_x$ multilayer thin film defroster as a function of supplied power.

Fig. S7. The temperature of the $Zn-SnO_x/ATC/Zn-SnO_x$ multilayer thin film defroster as a function of supplied power.

Materials	Power efficiency	Reliable heating-	Transmittance	Ref.
	(°C cm²/W)	cooling cycle	(%, at 550 nm)	
ΙΤΟ	88	-	-	_ 1
FTO	119	-	-	-
Ag nanowire(AgNW)	160	20	58	2
AgNW/PEDOT:PSS	179	50	83	1
Ag wire mesh	255	5	77	3
Cu/Ni nano-network	421	20	71	4
ZTO/Ag/ZTO multilayer	322	100	86	Previous work ⁵
ZTO/ATC/ZTO multilayer	305	200	89	This work

Table S1. Comparison of power efficiency, reliable heat-cooling cycle, and transmittance of reported transparent defroster.

Reference

- 1 S. Ji, W. He, K. Wang, Y. Ran and C. Ye, *Small*, 2014, **10**, 4951–4960.
- Q. Huang, W. Shen, X. Fang, G. Chen, J. Guo, W. Xu, R. Tan and W. Song, *RSC Advances*, 2015, 5, 45836–45842.
- 3 S. Kiruthika, R. Gupta and G. U. Kulkarni, *RSC Advances*, 2014, 4, 49745–49751.
- R. Yoshikawa, M. Tenjimbayashi, T. Matsubayashi, K. Manabe, L. Magagnin, Y. Monnai and S.
 Shiratori, ACS Applied Nano Materials, 2018, 1, 860–868.
- J. Jang, N. S. Parmar, W. K. Choi and J. W. Choi, ACS Applied Materials and Interfaces, 2020, 12, 38406–38414.