Electronic Supplementary Information for

SnS_2/MX ene derived TiO_2 hybrid for ultra-fast room temperature NO_2 gas sensing

Tianding Chen, Wenhao Yan, Ying Wang, Jinli Li, Haibo Hu, and Derek Ho*

Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.

* Corresponding author, e-mail address: derekho@cityu.edu.hk

Fig. S1. XRD spectra of the as-prepared SnS_2 and as-prepared MXene.

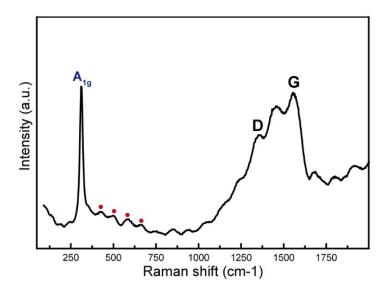


Fig. S2. Raman spectrum of the SMT hybrid.

Fig. S3. XPS spectra of SMT and SnS_2 : (a) Sn^{4+} and (b) S^{2-} .

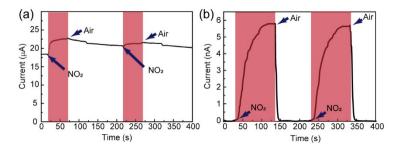


Fig. S4. Room temperature 1000 ppm NO_2 sensing response of (a) ST hybrid (i.e. does not contain MXene), and (b) SMT-2 hybrid. Results show that MXene significantly enhances gas sensing performance.