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Basis sets were obtained from the following sources:

 Ir: Basis Set Exchange Resource1, specifically, LANL2TZ(f) as used in Ping et al.2

 O: Ping et al.2

 Zn: Gryaznov et al.3

Emphasized coefficients in the Zn basis set were optimized with OPTBAS program4 (see main text for details).
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Geometry relaxation
After a full structure relaxation, the primitive unit cell of wurtzite ZnO has lattice constants a=3.2573 Å and c=5.1981 
Å (experimental values are 3.2494 and 5.2054 Å, respectively5) and has a 3.45 eV wide bandgap (experimental value 
is 3.44 eV6). 

Wyckoff positions of atomic coordinates in Ir-containing reference structures have free parameters. After a full 
structure relaxation, they are as follows:

IrO2: rutile structure (space group ) structure, [Ir: 2a; O: 4f (0.307, 0.307, 0)]𝑃42/𝑚𝑛𝑚

Ir2O3: corundum structure (space group ), [Ir: 4c (0, 0, 0.350); O: 6e (0.702, 0, 0.25)] * Hexagonal axes𝑅3̅𝑐

ZnIr2O4: spinel structure (space group ), [Zn: 8a; Ir: 16d; O: 32e (0.2609, 0.2609, 0.2609)] * Standard setting 𝐹𝑑3̅𝑚
(origin choice 2)
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Table S1. Calculated and experimental bulk properties of IrO2, Ir2O3, and ZnIr2O4. a, c are the lattice parameters, 
 is the Ir-O interatomic distance,  and  are effective atomic charges of Ir and O, respectively,  and  are 𝑑𝐼𝑟 ‒ 𝑂 𝑞𝐼𝑟 𝑞𝑂 𝜇𝐼𝑟 𝜇𝐼𝑟

their magnetic moments, ΔE is the bandgap value.

a; c, Å , 𝑑𝐼𝑟 ‒ 𝑂
Å , e𝑞𝐼𝑟 , µB

𝜇𝐼𝑟 , e𝑞𝑂 , µB
𝜇𝑂 ΔE, eV a; c

exp, Å
e

𝑑𝐼𝑟 ‒ 𝑂

xp, Å

IrO2
4.471;
3.169

short:
1.942
long:
1.999

1.712 0.625 -0.856 0.171 None 4.505;
3.1597

short:
1.94-
1.960 
long:

1.999-
2.00 7,8

Ir2O3
5.213;
13.848

short:
2.053
long:
2.085

1.241 0.000 -0.827 0.000 3.39

5.214-
5.438

13.846 -
14.7379

1.53-
1.57

ZnIr2O4 8.633 2.069 1.067 0.000 -0.824 0.000

3.44 
(present)
2.9710,a

3.3011,a

8.503-
8.50710

Notes: a) experimental optical band gap
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Spin densities

a) 𝐼𝑟
2 +𝑂4

b) 𝐼𝑟
3 +𝑂4

c) 𝐼𝑟
4 +𝑂5

Fig. S1. Atomic structure and spin density distribution. Light yellow spheres represent Ir atoms, gray – Zn, and red – 
O atoms. Yellow clouds represent orbitals with unpaired electrons. The box marks the supercell boundaries. All 
named oxygen atoms are bound to Ir. All Ir-bound oxygen atoms have a nonzero spin. 
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Thermoelectric properties

Fig. S2. Left panel: The partial DOS as a function of E- EVBM (left-bottom axis) and Seebeck coefficient (S) at T=308 oK 
as a function of Fermi level µF=µ-EVBM (top-right axis). The valence band maximum (EVBM) is taken as zero (grey 
dashed line). DOS lines are smoothed with a cubic spline. No scaling is applied.  Right panel: the Seebeck coefficient 

for a range of temperatures. a,d) ZnO; b,e) , c, f) .𝐼𝑟3 +𝑂4 𝐼𝑟4 +𝑂5
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