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Basis sets were obtained from the following sources:

e Ir: Basis Set Exchange Resource?, specifically, LANL2TZ(f) as used in Ping et al.?

e O:Pingetal?
e 7n:Gryaznov et al.?

Emphasized coefficients in the Zn basis set were optimized with OPTBAS program* (see main text for details).
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Geometry relaxation

After a full structure relaxation, the primitive unit cell of wurtzite ZnO has lattice constants a=3.2573 A and ¢c=5.1981
A (experimental values are 3.2494 and 5.2054 A, respectively5) and has a 3.45 eV wide bandgap (experimental value

is 3.44 eV®).

Wyckoff positions of atomic coordinates in Ir-containing reference structures have free parameters. After a full

structure relaxation, they are as follows:

IrO,: rutile structure (space group P42/mnm) structure, [Ir: 2a; O: 4f (0.307, 0.307, 0)]
Ir,03: corundum structure (space group R3¢), [Ir: 4c (0, 0, 0.350); O: 6e (0.702, 0, 0.25)] * Hexagonal axes
Znlr,0,: spinel structure (space group Fd3m), [zn: 8a; Ir: 16d; O: 32e (0.2609, 0.2609, 0.2609)] * Standard setting

(origin choice 2)




Table S1. Calculated and experimental bulk properties of IrO,, Ir,03, and Znlr,0,. a, c are the lattice parameters,

dp—o is the Ir-O interatomic distance, 91 and 90 are effective atomic charges of Ir and O, respectively, Hir and Hir are

their magnetic moments, AE is the bandgap value.
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Notes: a) experimental optical band gap



Spin densities

Fig. S1. Atomic structure and spin density distribution. Light yellow spheres represent Ir atoms, gray — Zn, and red —
O atoms. Yellow clouds represent orbitals with unpaired electrons. The box marks the supercell boundaries. All
named oxygen atoms are bound to Ir. All Ir-bound oxygen atoms have a nonzero spin.



Thermoelectric properties
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Fig. S2. Left panel: The partial DOS as a function of E- Eygy (left-bottom axis) and Seebeck coefficient (S) at T=308 °K
as a function of Fermi level pr=p-Eygw (top-right axis). The valence band maximum (Eygy) is taken as zero (grey
dashed line). DOS lines are smoothed with a cubic spline. No scaling is applied. Right panel: the Seebeck coefficient

3+ 4+
for a range of temperatures. a,d) ZnO; b,e) Ir 04, c, f) Ir 05.



References

1 B.P. Pritchard, D. Altarawy, B. Didier, T.D. Gibson, and T.L. Windus, J. Chem. Inf. Model. 59, 4814 (2019).

2Y. Ping, G. Galli, and W.A. Goddard, J. Phys. Chem. C 119, 11570 (2015).

3 D. Gryaznov, E. Blokhin, A. Sorokine, E.A. Kotomin, R.A. Evarestov, A. Bussmann-Holder, and J. Maier, J. Phys. Chem.
C 117, 13776 (2013).

4R.A. Evarestov, A.l. Panin, A.V. Bandura, and M.V. Losev, J. Phys.: Conf. Ser. 117, 012015 (2008).

5 H. Sowa and H. Ahsbahs, J Appl Cryst 39, 169 (2006).

6 A. Janotti and C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009).

7 A.A. Bolzan, C. Fong, B.J. Kennedy, and C.J. Howard, Acta Crystallogr. Sect. B 53, 373 (1997).

8T. Arikawa, Y. Takasu, Y. Murakami, K. Asakura, and Y. Iwasawa, ] Phys Chem B 102, 3736 (1998).

9 M.-S. Miao and R. Seshadri, J Phys Condens Matter 24, 215503 (2012).

10 M. Dekkers, G. Rijnders, and D.H.A. Blank, Applied Physics Letters 90, 021903 (2007).

11 M.J. Wahila, Z.W. Lebens-Higgins, A.J. Jackson, D.O. Scanlon, T.-L. Lee, J. Zhang, K.H.L. Zhang, and L.F.J. Piper, Phys
Rev B 100, (2019).



