Supporting Information

Highly contrastive, real-time modulation of light intensity by reversible stress-whitening of spontaneously formed nanocomposites: Application to wearable strain sensors

Seung Koo Park,*^a Sungryul Yun,^a Geonwoo Hwang,^b Meejeong Choi,^a Dong Wook Kim,^c Jong-Moo Lee,^d Bong Je Park,^a Saekwang Nam,^{a,e} Heeju Mun,^b Seongcheol Mun,^a Jeong Mook Lim,^a Eun Jin Shin,^a Ki-Uk Kyung*^b and Suntak Park*^a

^aHuman Enhancement & Assistive Technology Research Section, Artificial Intelligence Research Laboratory, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, South Korea.

^bDepartment of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea.

^cAdvanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea.

^dQuantum Optics Research Section, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, South Korea.

^eHaptic Intelligence Department, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany.

*Corresponding authors: S. K. Park (skpark@etri.re.kr); K.-U. Kyung (kyungku@kaist.ac.kr); S. Park (spark@etri.re.kr)

Experimental

Materials

Diethoxydimethylsilane, diethoxymethylvinylsilane, and diethoxymethylsilane were acquired from Tokyo Chemical Industry Co., Ltd. *tert*-Butyl acrylate (*t*BA), 37 % hydrochloric acid (HCl), platinum (0)-1,3-divinyl-1,1,3,3,-tetramethyldisiloxane complex solution containing 0.05 mol% of platinum, 2,2-dimethoxy-2-phenylacetophenone, and chloroform- d_1 were purchased from Aldrich Chemical Co., Inc. Magnesium sulfate and ethyl acetate (EA) were acquired from Junsei Chemical Co., Ltd.

Synthesis of poly(dimethylsiloxane-co-methylsiloxane) (PDMMS)

50.1 g of diethoxydimethylsilane, 5.0 g of diethoxymethylsilane, 5.7 mL of distilled water, and 1.5 mL of 37 % HCl were used. The feeding mole ratio of diethoxydimethylsilane to diethoxymethylsilane is 0.90 to 0.10. The detailed polymerization and purification methods can be found in our previous report. Yield: 22.3 g (82 %). M_n =6.0×10³ g/mol. M_w =18.4×10³ g/mol. n:o (mole ratio)=0.900:0.100. IR v_{max} (cm⁻¹): 2963s, 2905m (C-H str., methyl); 2156m (Si-H str.); 1412m (C-H ben., methyl); 1093s, 1023s (Si-O-Si str.). ¹H NMR δ_h (ppm): 4.63 (Si-H, d); 5.85-5.78 (-CH=, m); 0.05 (-CH₃, m). ¹³C NMR δ_c (ppm): 1.14 (-CH₃).

Fabrication of a poly(tert-butyl acrylate) (PtBA) film for initial modulus and refractive index measurement

After 0.5 mol% of 2, 2-dimethoxy-2-phenylacetophenone was completely dissolved in *t*BA, the solution was filtered with a 1.0 μ m Teflon filter. The P*t*BA film was fabricated in the same way as the stress-whitening films were. The solution was also spin-coated on the hypotenuse surface of a high-index right-angle prism (N-SF11 glass, *n*=1.7778). The layer on the prism was UV-cured and dried in the same way as the P*t*BA film was.

Fabrication of a PDMS film for initial modulus and refractive index measurements

First, 0.0030 g of platinum (0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex solution and 0.8078g of P06 were completely mixed together. 0.028 g of PDMMS was added to 0.229 g of the P06 containing the platinum catalyst and was completely mixed with the P06. The polymer mixture was casted on a glass plate and the high-index right-angle prism by Doctor-knife. The polymer layers were annealed at 70 $^{\circ}$ C under vacuum for 2 h, followed by removal of air bubbles from the layers at room temperature for 1 h under vacuum.

Calculation of solubility parameter (δ) of tBA and $\Delta\delta$ between tBA and PDMS by method Hoftyzer-Van Krevelen

The solution parameter components (δ_d , δ_p , δ_h) of a given material can be <u>calculated</u> from its

 $\delta d = \frac{\sum_{V} F_{di}}{V}, \delta_{p} = \frac{\sqrt{\sum_{V} F_{2pi}}}{V}, \delta_{h} = \sqrt{\frac{\sum_{V} F_{1}}{V}},$ where δ_{d} , δ_{p} , and δ_{h} are a solubility parameter contributed by dispersion, polar, and hydrogen bonding components, respectively. F_{di} and F_{pi} are a molar attraction constant contributed by dispersion and polar components, respectively. E_{hi} is hydrogen bonding energy. V is a molar volume. The solubility parameter of a given material can be calculated using the following equation: $\delta = \sqrt{\delta d2} + \delta p2 + \delta h2$. The solubility of a polymer in a solvent can be estimated using the following equation: $\Delta \delta = \sqrt{(\delta d, p - \delta d, s)2 + (\delta p, p - \delta p, s)2 + (\delta h, p - \delta h, s)2}$, where $\delta_{d,p}$, $\delta_{p,p}$, $\delta_{h,p}$ and $\delta_{d,s}$, $\delta_{p,s}$, $\delta_{h,s}$ are δ_{d} , δ_{p} , and δ_{h} of a polymer and solvent, respectively. $\Delta \delta$ means a 3D distance of solubility parameter between the polymer and solvent in a solubility sphere. The $\delta, \delta_{d}, \delta_{p}$, and δ_{h} values for *t*BA ware calculated as shown in table S1. The values for PDMS and $\Delta \delta$ between PDMS and *t*BA were shown in table S2. The unit for δ are expressed as the square root of a cohesive energy density (J^{1/2}·cm^{-3/2}) which is associated with intermolecular attractive interactions or as the square root of a pressure (MPa^{1/2}).

Schemes

Scheme S1 Synthesis of poly(dimethylsiloxane-co-methylsiloxane) (PDMMS).

Scheme S2 A schematic diagram of UV-cure equipment.

Figures

Fig. S1 A Photograph of PDMVS copolymers.

Fig. S2 IR (a), ¹H NMR (b), ¹³C NMR (c) spectra, and GPC (d) results of poly(dimethylsiloxane-*co*-methylvinylsiloxane) (PDMVS) (97:3, mol%) (P03).

Fig. S3 IR (a), ¹H NMR (b), ¹³C NMR (c) spectra, and GPC (d) results of poly(dimethylsiloxane-*co*-methylvinylsiloxane) (PDMVS) (94:6, mol%) (P06).

Fig. S4 IR (a), ¹H NMR (b), ¹³C NMR (c) spectra, and GPC (d) poly(dimethylsiloxane-*co*-methylvinylsiloxane) (PDMVS) (88:12, mol%) (P12).

results of

Fig. S5 IR (a), ¹H NMR (b), ¹³C NMR (c) spectra, and GPC (d) results of poly(dimethylsiloxane-*co*-methylsiloxane) (PDMMS) (90:10, mol%).

Fig. S6 DSC thermograms of the UV-cured films on the second heating.

Fig. S7 A cross-sectional SEM image of the F06-20 film.

Fig. S8 Motion capture of the F06-20 film at each strain during drawing.

Fig. S9 A variation in size distribution of the PtBA nanoparticles packed into the F06-20 film with strain.

Fig. S10 A photograph of reflecting-type strain sensor established for human motion monitoring. The perforated frame putting on the index finger is used to facilitate finger movement during sensor performance test. The magnified view shows a detailed structure of optical transceiver module.

Fig. S11 A sensor performance test for real-time monitoring change in finger joint angle. An encoder measuring bending angle is mounted on the finger joint with a link system. Time-response of the reflecting-type strain sensor was simultaneously compared to the signal from the encoder.

Fig. S12 The continuous sensor response of transmitting and reflecting-type strain sensor during an elongation-recovery cycle. In the case of the transmitting-type strain sensor with a small light source (case I), unstable sensor output is observed at the initial stage of elongation ($\varepsilon < 10\%$) due to an inconsistent position mismatch between a light illuminated spot and streaks irregularly generated at the elastomer film, while the reflecting-type strain sensor exhibits stable response regardless of size of a light source.

Tables

tBA		F _{di}	F _{pi}	E _{hi}
Chemical structure	Group contribution	$(J^{1/2} \cdot cm^{3/2} \cdot mol^{-1})$	$(J^{1/2} \cdot cm^{3/2} \cdot mol^{-1})$	(J·mol ⁻¹)
	$-CH_3 \times 3$	420 × 3	0	0
	-COO- × 1	390 × 1	490 × 1	7000 × 1
0	$=CH_2 \times 1$	400 × 1	0	0
M _w =128.17	=CH- × 1	200 × 1	0	0
d=0.875 g/mL at 25 °C ^{S1}		-70 × 1	0	0
Total		2180	490	7000

Table S1 Calculation of δ , δ_d , δ_p , and δ_h for *t*BA.

$$V_{tBA} = 128.17/0.875 = 146.48 \text{ (cm}^{3} \cdot \text{mol}^{-1})$$

$$\delta d_{t}tBA = \frac{2180}{146.48} = 14.9 \text{ (MPa1/2)}$$

$$\delta p_{t}tBA = \frac{\sqrt{4902}}{146.48} = 3.35 \text{ (MPa1/2)}$$

$$\delta h_{t}tBA = \sqrt{\frac{7000}{146.48}} = 6.91 \text{ (MPa1/2)}$$

$$\delta tBA = \sqrt{14.92 + 3.352 + 6.912} = 16.8 \text{ (MPa1/2)}$$

Table S2 $\Delta \delta$ calculated from the three solubility components, δ_d , δ_p , and δ_h , of PDMS and *t*BA.

	$\delta_d (MPa^{1/2})$	$\delta_p(MPa^{1/2})$	$\delta_h(MPa^{1/2})$	δ (MPa ^{1/2})	Δδ
PDMS	16.0	0.1	4.7	16.7	4.08
tBA	14.9	3.35	6.91	16.8	
$\Delta \overline{\delta} (PDMS/tBA) = \sqrt{(16.0 - 14.9)2 + (0.1 - 3.35)2 + (4.7 - 6.91)2} = 4.08$					

Table S3 Composition of PDMVS solutions in *t*BA.

Name of polymer solution	P03 (g)	<mark>P06</mark> (g)	<mark>P12</mark> (g)	tBA ^{a)}	Acrylate/Vinyl groups (mole ratio)
<mark>803-20</mark>	0.5176			2.0796	83.3
<mark>S06-20</mark>		0.7022		2.8468	43.0
S12-20			0.5208	2.0905	20.6
S12-30			0.9878	2.3090	12.0

^{a)}tBA contains 0.5 mol% of a photoinitiator.

Spectra	UV-V	UV-A	UV-B	UV-C
Intensity (mW/cm ²)	7.25	8.85	0.26	0.84

UV-V: 395~445 nm; UV-A: 320~390 nm; UV-B: 280~320 nm; UV-C: 250~260 nm (obtained from the manual of the radiometer).

Table S5 Mechanical properties of the stress-whitening films.^{a)}

Film	Initial modulus (MPa)	Maximum stress (MPa)	Yield strain	Maximum strain
F03-20	15.67 (1.60) ^{b)}	3.49 (0.16)	0.103 (0.011)	1.02 (0.09)
F06-20	16.70 (2.28)	9.03 (0.53)	0.171 (0.003)	1.29 (0.14)
F12-20	34.24 (5.18)	12.95 (1.82)	0.173 (0.025)	1.06 (0.20)
F12-30	9.24 (0.68)	10.29 (0.27)	0.492 (0.063)	2.04 (0.15)

^{a)}The properties were obtained from Fig. 2c. ^{b)}The values in parentheses mean standard deviation.

Movies

Movie S1 A video clip taken right after the reversible stress-whitening in a transparent PDMS film was discovered.

Movie S2 A video clip showing the F12-20 film drawn and recovered back by an Instron machine.

Movie S3 A video clip showing the application of strain sensor for human motion monitoring.

Reference

S1. Sigma-Aldrich, Online Product Catalog, https://www.sigmaaldrich.com/korea.html, (accessed November 2020).