Supporting Information

Lead-free organic-inorganic hybrid semiconductors and

NLO switches tuned by dimensional design

Hong-Yi Shen, Lei He, Ping-Ping Shi and Qiong Ye*

(Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P.R. China)

Powder X-ray Diffraction

powder X-ray diffraction (PXRD) measurements on a PANalytical X'Pert PRO X-ray diffractometer were performed at room temperature. Diffraction patterns were recorded in the 2θ range 5–50° with a step size of 0.02°. Some medium sized (average 2.5*0.5*0.7 mm for 1 and 3.3*2.3*0.8 mm for 2) and good quality crystals are ground into powder for PXRD testing. As shown in Fig. S1, PXRD patterns obtained at 298 K coincide well with the simulated patterns based on the crystal structures at room temperature, indicating the phase purity of the as-grown crystals of the two compounds.

Thermal Measurements

DSC measurement was performed by the Netzsch Model DSC 200 F3 instrument through the heating and cooling process. Some crystalline

samples of compounds **1** (16.4 mg), **2** (15.3 mg) were placed in aluminum crucible under a nitrogen atmosphere and were measured at a rate of 20 K/min over the temperature range of 150 K-403 K.

Single-Crystal X-ray Crystallography

The crystal structures of **1** crystal at 143 K, 236 K and **2** crystal at 323 K were obtained by Mo K α radiation at the Bruker APEX II CCD detector. *Bruker SAINT* was used to perform data reduction and multi-scan absorption correction.

The structure of **1** crystal at 293 K was collected on a XtaLAB Synergy R, HyPix diffractometer with Mo K α radiation ($\lambda = 0.71073$ Å) at different temperatures. *CrysAlisPro* 1.171.40.39a (Rigaku OD, 2019) was used to perform data reduction and multi-scan absorption correction.

The structure of **2** crystal at 173 K was obtained on a PHOTON 2 CMOS detector with Mo K α radiation. *Bruker SAINT* was used to perform data reduction and multi-scan absorption correction.

Crystal structures were solved with direct method, and then refined by the *SHELXLTL* software package (*SHELX*-14) using full-matrix least-squares refinements on F^2 . Crystal data and refinement of **1** and **2** at different phases were given in Table S1. In addition, the size of the crystal **1** used to measure XRD is 0.04*0.02*0.02 mm, while **2** is 0.06*0.06*0.04 mm. Those crystals used to measure variable-temperature X-ray diffraction are

large enough and of good quality. CCDC 2056728, 2056730, 2056731, 2056732 and 2056733 contain the supplementary crystallographic data for this paper.

Second harmonic generation (SHG) measurement.

Variable-temperature SHG experiments of **1** and **2** were performed on powder samples using the fundamental laser beam with a low divergence (pulsed Nd: YAG at a wavelength of 1064 nm, 5 ns pulse duration, 1.6 MW peak power, 10 Hz repetition rate). The numerical values of the nonlinear optical coefficients for SHG have been determined by comparison with a KH₂PO₄ reference. The crystals used to measure SHG are medium in size (average 2.7*0.6*0.6 mm for **1** and 3.8*2.7*0.9 mm for **2**) and transparent without cracks.

Piezoelectric coefficients measurement.

The piezoelectric coefficients of the samples were determined by a quasistatic d_{33} meter (Institute of Acoustics, Chinese Academy of sciences, model ZJ-4AN). The size and d_{33} of crystals **2** used to measure piezoelectric properties are listed in Table.S6 and those crystals are large enough and of good quality.

Dielectric Constant Measurements

The temperature-dependent dielectric measurements were taken on a Tonghui TH2828A instrument, using pressed-powder tablets and observing any abnormal phenomenon between 113 K and 443 K within the frequency range of 500 Hz to 1 MHz. The pressed-powder pellets made by the samples of **1** and **2** were deposited with carbon conducting glue to act as the electrodes for dielectric measurements.

Ultraviolet-visible (UV-vis) absorption spectrum

The plots of UV/Vis spectrum were measured on Shimadzu (Tokyo, Japan) UV-2600 spectrophotometer with powder samples of some single crystals at room temperature. BaSO₄ was used as the reference and powder of crystal **1** and **2** were prepared for the measurements

Thermogravimetric (TG)

TG analyses were performed on a TAQ50 system with a heating rate of 10 K min⁻¹ in the air. Measurements were made at 300 K \sim 1050 K and the results showed that powder of crystal **1** and **2** began to decompose at 490 K and 422 K, respectively.

Fig. S1 The experimental and simulated Powder X-ray diffraction (PXRD) patterns of **1** and **2** at room temperature, respectively.

Fig. S2 The asymmetry unit of **1** at 236 K. All hydrogen atoms are omitted for clarity.

Fig. S3 Piezoelectricity of **2**. (a) A picture of a large crystal and the simulative single crystal pattern of **2**. The largest natural face is (010)-face. (b) Recording the piezoelectric constant of a plate of **2** perpendicular to the largest natural face. The average size of the crystal **2** used to measure d_{33} is 4.12*3.98*2.75 mm.

Fig. S4 Obtained crystal photos of 1 and 2.

Fig. S5 The complete cycles of the SHG switching properties of 1 and 2.

Fig.S6 The real part (ϵ') of pressed-powder pellet for **1** (a) and **2** (b) at 500 Hz, 1 kHz, 5 kHz, 10 kHz, 100 kHz and 1 MHz in cooling mode.

Fig. S7 Imaginary parts of the dielectric constants of compounds 1(a) and2(b) measured at 1 MHZ frequency in cooling mode.

Fig.S8 TG curves for 1 (a) and 2 (b).

Fig. S9 Comparisons of UV spectra of 1 and 2 compounds with direct band gap ZnO and indirect band gap TiO_2 .

Fig. S10 DSC traces for **2** below room temperature, indicating that there is no phase transition at low temperature.

Given space group P_{21} (belong to the point group 2) of 2 in the room temperature, the piezoelectric constant matrix [d] can be written as:

$$\begin{pmatrix} 0 & 0 & 0 & d_{14} & 0 & d_{16} \\ d_{21} & d_{22} & d_{23} & 0 & d_{25} & d_{26} \\ 0 & 0 & 0 & d_{34} & 0 & d_{36} \end{pmatrix}$$
(S1)

And the matrix [d] of converse piezoelectric can be derived as:

$$\begin{pmatrix} 0 & d_{21} & 0 \\ 0 & d_{22} & 0 \\ 0 & d_{23} & 0 \\ d_{14} & 0 & d_{34} \\ 0 & d_{25} & 0 \\ d_{16} & d_{26} & d_{36} \end{pmatrix}$$
(s2)

Compound **1** also has piezoelectric properties because it belongs to the 222 point group. While, the crystal exhibits a fine needle-like morphology and no instrument can test other piezoelectric coefficients, resulting the piezoelectric properties of **1** are not characterized.

 Table S1. Crystal data and Refinement of 1 and 2 collected at different

 phases.

	$(C_4H_{10}NO)_2SbBr_5(1)$			(C ₄ H ₁₀ NO) ₅ Sb ₄ Br ₁₇ (2)		
Temp (K)	143	236	293	173	323	
Cryst syst		orthorhombic		monoclinic		
space group		$P2_{1}2_{1}2_{1}$		$P2_1$		
Mr		2092.56		228	5.99	
a (Å)	8.8393(19)	8.9134(18)	8.8663(8)	13.8913(4)	14.064(4)	
b (Å)	18.357(4)	18.389(3)	18.7062(16)	17.7216(5)	17.655(5)	
c (Å)	33.984(8)	34.305(6)	11.4394(10)	22.1687(6)	11.292(3)	
β (deg)	90	90	90	98.078(1)	81.036(5)	
V(Å ³)	5521(2)	5622.9(18)	1897.3(3)	5403.0(3)	2769.6(13)	
Ζ		4		4	2	
GOF	1.062	1.066	1.023	1.039	1.038	
$R_1/wR_2[I>2\sigma(I)]$	0.0677/0.1953	0.0470/0.1508	0.0702/0.2558	0.0473/0.0801	0.0577/0.1791	

173k	Angles (°)	323k	Angles (°)
Br_{20} - Sb_5 - Br_{18}	89.25(6)	Br_{19} - Sb_5 - Br_{18}	85.56(3)
Br_{19} - Sb_5 - Br_{18}	86.77(6)	Br_{19} - Sb_5 - Br_{20}	91.31(3)
Br_{19} - Sb_6 - Br_{17}	93.36(6)	$Br_{18}\text{-}Sb_{5}\text{-}Br_{20}$	89.49(3)
Br_{19} - Sb_6 - Br_{20}	86.83(5)	Br_{17} - Sb_6 - Br_{20}	85.48(3)
Br_{17} - Sb_6 - Br_{20}	86.62(6)	Br_{17} - Sb_{6} - Br_{19}	86.48(2)
Br_{17} - Sb_7 - Br_{18}	85.17(6)	Br_{20} - Sb_{6} - Br_{19}	88.71(2)
Br_{17} - Sb_7 - Br_{20}	89.31(6)	Br_{17} - Sb_7 - Br_{18}	85.66(2)
Br_{18} - Sb_7 - Br_{20}	85.85(6)	Br_{17} - Sb_7 - Br_{20}	84.61(3)
Br_{18} - Sb_8 - Br_{19}	85.70(6)	$Br_{18}\text{-}Sb_7\text{-}Br_{20}$	88.19(2)
Br_{18} - Sb_8 - Br_{17}	82.24(6)	Br_{17} - Sb_8 - Br_{18}	89.66(3)
Br_{19} - Sb_8 - Br_{17}	88.02(6)	Br_{17} - Sb_8 - Br_{19}	90.69(3)
Sb_4 - Br_1 - Sb_3	92.40(5)	Br_{18} - Sb_8 - Br_{19}	86.81(3)
Sb_7 - Br_{17} - Sb_6	93.75(6)	Sb_8 - Br_{17} - Sb_6	92.96(3)
Sb_7 - Br_{17} - Sb_8	94.88(6)	Sb_7 - Br_{17} - Sb_8	92.76(3)
Sb_6 - Br_{17} - Sb_8	86.39(6)	Sb_6 - Br_{17} - Sb_7	96.20(3)
Sb_8 - Br_{18} - Sb_5	94.60(6)	Sb_8 - Br_{18} - Sb_5	93.60(3)
Sb_8 - Br_{18} - Sb_7	97.70(6)	Sb_8 - Br_{18} - Sb_7	91.49(3)
Sb_5 - Br_{18} - Sb_7	91.99(6)	Sb_5 - Br_{18} - Sb_7	91.73(3)
Sb_6 - Br_{19} - Sb_5	93.59(7)	Sb_8 - Br_{19} - Sb_5	93.76(3)
Sb_6 - Br_{19} - Sb_8	91.24(6)	\mathbf{Sb}_8 - \mathbf{Br}_{19} - \mathbf{Sb}_6	89.53(2)

 Table S2. Selected bond angles [°] for 2 at different temperatures.

Sb_5 - Br_{19} - Sb_8	92.69(6)	$Sb_5-Br_{19}-Sb_6$	90.06(2)
Sb_5 - Br_{20} - Sb_7	92.47(6)	Sb_5 - Br_{20} - Sb_6	89.65(3)
Sb_5 - Br_{20} - Sb_6	90.66(6)	Sb_5 - Br_{20} - Sb_7	90.31(3)
Sb_7 - Br_{20} - Sb_6	90.32(6)	Sb_6 - Br_{20} - Sb_7	93.72(3)
Sb_4 - Br_1 - Sb_2	89.59(6)		
Sb_3 - Br_1 - Sb_2	88.04(6)		
Sb_1 - Br_2 - Sb_3	91.05(6)		
Sb_1 - Br_2 - Sb_4	92.21(6)		
Sb_3 - Br_2 - Sb_4	95.75(5)		
Sb_2 - Br_3 - Sb_1	94.20(7)		
Sb ₂ -Br ₃ -Sb ₄	90.78(6)		
Sb_1 - Br_3 - Sb_4	88.56(6)		
Sb ₃ -Br ₄ .Sb ₁	89.81(6)		
Sb_3 - Br_4 - Sb_2	91.71(6)		
Sb_1 - Br_4 - Sb_2	92.68(6)		

Sb-Br bonds (Å)	173 K	323 K
Sb_5 - Br_{18}	3.153(2)	3.184(1)
$\mathbf{Sb}_{5} ext{-}\mathbf{Br}_{19}$	3.120(2)	3.151(1)
$\mathrm{Sb}_{5} ext{-}\mathrm{Br}_{20}$	3.099(2)	3.215(9)
Sb_6 - Br_{17}	3.223(2)	3.171(1)
Sb_6 - Br_{19}	3.079(2)	3.276(1)
Sb_6 - Br_{20}	3.253(2)	3.263(1)
$\mathrm{Sb}_{7} ext{-}\mathrm{Br}_{17}$	3.082(2)	3.199(1)
Sb_7 - Br_{18}	3.211(3)	3.213(1)
Sb_7 - Br_{20}	3.238(3)	3.261(1)
$\mathrm{Sb}_8 ext{-}\mathrm{Br}_{17}$	3.367(2)	3.065(9)
Sb_8 - Br_{18}	3.102(2)	3.118(1)
Sb ₈ -Br ₁₉	3.233(3)	3.144(1)

Table S3 Selected Sb-Br bonds for **2** at 173 K and 323 K.

D—H…Acceptor	D—H	Н…А	D····A	D—H…A
$N_{1A}\text{-}H_{1AD}\cdots Br_{33}{}^{\#1}$	0.911	2.399	3.281	163.11
$N_{1B} \text{-} H_{1BD} \cdots Br_{33}{}^{\#2}$	0.917	2.319	3.235	178.55
$N_{1F_c}\text{-}H_{1FD_c}\cdots Br_{33}$	0.911	2.439	3.283	154.13
$N_{1U_d}\text{-}H_{1UD_d}\cdots Br_{33}$	0.910	2.450	3.317	159.41
$N_{1T_h}\text{-}H_{1TD_h}\cdots Br_{44_h}$	0.906	2.774	3.545	143.66

Table S4. Hydrogen bonds for 2 at 173 K.

Symmetry transformations used to generate equivalent atoms: [#1] = x, y-

1, z-1; [#2] = -x+1, y-1/2, -z+2

Table S5. Hydrogen bonds for **2** at 323 K.

D—H…Acceptor	D—H	Н…А	D…A	D—H…A
N_1 - H_{1B} ···B $r_{33}^{\#1}$	0.890	2.684	3.569	172.57
N_3 - H_{3B} ···B r_{33}	0.890	2.184	3.073	176.56
N_4 - H_{4B} ···B r_{33}	0.890	3.113	3.675	123.09
$N_5-H_{5B}\cdots Br_{33}^{\#2}$	0.890	2.721	3.466	141.97

Symmetry transformations used to generate equivalent atoms: [#1] = -x+1, y+1/2, -z+1, -z+1; [#2] = -x+1, y+1/2, -z+1

Table S6 The sizes of crystals 2 for measuring piezoelectric properties. (The average size of the crystal 2 used to measure d_{33} is 4.12*4.05*2.77 mm)

	a	b	С	<i>d</i> 33
Sample 1	4.13	4.02	2.85	22
Sample 2	4.22	3.94	2.83	22
Sample 3	4.09	4.08	3.12	22
Sample 4	3.89	3.78	2.25	19
Sample 5	4.28	4.43	2.78	26