Electronic Supporting Information

High-efficiency Solution-processed Light-emitting Diode Based on a

Phosphorescent Ag₃Cu₅ Cluster Complex

Zhu Jiao,^{ab} Ming Yang,^{*b} Jin-Yun Wang,^b Ya-Zi Huang,^b Pei Xie,^{a,b} Zhong-Ning Chen^{*abc}

^a College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China

^b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. Email: czn@fjirsm.ac.cn, ym31023@fjirsm.ac.cn

^c Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China

	Ag ₃ Cu ₅ Cluster		
chemical formula	$C_{255}H_{239}N_9P_6Ag_3Cu_5Cl_2O_8$		
formula weight	4455.57		
crystal system	Triclinic		
space group	$P \overline{1}$		
<i>T</i> (k)	273 (2)		
<i>a</i> (Å)	15.479 (2)		
<i>b</i> (Å)	15.967 (2)		
<i>c</i> (Å)	54.448 (6)		
α (°)	83.158 (5)		
β (°)	89.009 (4)		
γ (°)	75.683 (6)		
$V(Å^3)$	12943.32 (3)		
Z	2		
density (g/cm ³)	1.143		
reflns collected	196725		
unique reflns	47348		
R _{int}	0.171		
<i>F</i> (000)	4612		
R_1^a [I>2 σ (I)]	0.082		
wR_2^{b} [I>2 σ (I)]	0.261		
GOF	1.01		
${}^{a}R_{1} = \Sigma F_{o} - F_{c} / \Sigma F_{o} , \qquad {}^{b}wR_{2} = [\Sigma w (F_{o} - F_{c})^{2} / \Sigma w F_{o} ^{2}$	= $\Sigma F_o - F_c / \Sigma F_o $, ${}^{b} w R_2 = [\Sigma w (F_o - F_c)^2 / \Sigma w F_o ^2]^{1/2}$.		

 Table S1. Crystal Data and Structure Refinement for Ag₃Cu₅ Cluster Complex.

Ag1–Cu1	2.6379(10)	Ag1–Cu2	2.6529(11)
Ag2–Cu1	2.6616(11)	Ag2–Cu3	2.6485(10)
Ag3–Cu2	2.6702(11)	Ag3–Cu3	2.6818(9)
Cu1–Cu4	2.5555(12)	Cu1–Cu5	2.5928(12)
Cu2–Cu4	2.6269(11)	Cu2–Cu5	2.5346(11)
Cu3–Cu4	2.5248(13)	Cu5–Cu3	2.5956(13)
Cu4–Cu5	2.6979(12)	Ag1-C143	2.549(7)
Ag1–P6	2.490(2)	Ag1-P1	2.5038(19)
Ag2-C171	2.510(7)	Ag3-C115	2.450(8)
Ag2–P4	2.476(2)	Ag2–P5	2.467(2)
Ag3–P2	2.4709(18)	Ag3–P3	2.447(2)
Cu1–C89	1.952(8)	Cu1-C199	1.947(8)
Cu1–N3	2.057(6)	Cu2–N1	2.063(5)
Cu2 C115	1.958(8)	Cu2-C143	1.960(8)
Cu3-C171	1.976(7)	Cu3–C227	1.962(7)
Cu3–N2	2.073(6)	Cu4–C89	2.063(8)
Cu4–C115	2.094(7)	Cu4-C171	2.074(7)
Cu5-C143	2.083(7)	Cu5-C199	2.040(7)
Cu5–C227	2.073(8)		
P6-Ag1-P1	118.04(7)	P1-Ag1-C143	92.93(16)
P6-Ag1-C143	123.28(18)	P6-Ag1-C89	89.51(17)
P1-Ag1-C89	116.81(16)	C143-Ag1-C89	118.8(2)
P5-Ag2-P4	119.78(6)	P5-Ag2-C171	118.00(18)
P4-Ag2-C171	93.50(18)	P5-Ag2-C199	91.12(17)
P4-Ag2-C199	120.80(19)	C171-Ag2-C199	116.0(2)
P3-Ag3-C115	119.0(2)	P3-Ag3-P2	120.03(7)
C115-Ag3-P2	93.05(16)	P3-Ag3-C227	93.95(18)
C115-Ag3-C227	112.7(2)	P2-Ag3-C227	120.04(18)
C199-Cu1-C89	161.3(3)	C199-Cu1-N3	98.6(3)
C89-Cu1-N3	100.0(3)	C115-Cu2-N1	97.6(3)
C115-Cu2-C143	160.9(3)	C143-Cu2-N1	101.4(3)
C227-Cu3-C171	161.1(3)	C227-Cu3-N2	97.3(3)
C171-Cu3-N2	101.4(3)	C89-Cu4-C171	111.8(3)
C89-Cu4-C115	121.5(3)	C171-Cu4-C115	115.5(3)
C199-Cu5-C227	120.1(3)	C199-Cu5-C143	114.0(3)
C227-Cu5-C143	113.2(3)		

 Table S2. Selected Interatomic Distances (Å) and Bond Angles (°) of Ag₃Cu₅ Cluster Complex.

Table S3. The Partial Molecular Orbital Compositions (%) by SCPA Approach and the Absorption Transitions in the Ground State for Ag_3Cu_5 Cluster Complex in the CH_2Cl_2 Solution Calculated by TD-DFT Method at the PBE1PBE Level

orbital	energy	(eV)	MO contribution (%)				
		Cu (s	s/p/d)	Ag $(s/p/d)$		dpppy	ebzcz
LUMO	-1.53	47.93	8 (86/13/1)	22.05 (81/	10/9)	19.36	10.61
LUMO	-1.56	43.42	3 (67/30/3)	33.69 (85/	10/5)	20.66	2.21
LUMO	-1.83	22.42	2 (39/56/5)	43.13 (88/9	9/3)	19.15	15.30
LUMO	-1.94	21.0	1 (23/72/5)	46.82 (85/	12/3)	13.97	18.20
HOMO) -5.47	35.42	2 (14/7/79)	7.06 (72/6/	(22)	6.78	50.75
HOMO) -1 -5.52	32.74	4 (13/5/82)	4.27 (54/8/	/38)	8.12	54.87
HOMO)-2 -5.62	13.2	7 (35/11/54)	3.69 (58/12	2/29)	1.18	81.86
HOMO) -3 -5.71	9.54	(47/13/40)	6.70 (69/1)	7/14)	1.58	82.18
HOMO) -6 -5.87	34.0	5 (6/4/89)	4.04 (36/1	7/47)	7.51	54.41
state	<i>E</i> , nm (eV)	O.S. tr	transition (contrib.)		assignment		measured (nm)
S_1	444 (2.79)	0.0730 H	OMO→LUM	O (67%)	$^{1}MC/^{1}L$	MCT/ ¹ IL	435
		Н	OMO-1→LUI	MO (11%)	$^{1}MC/^{1}L$	MCT/ ¹ IL	

-					
			HOMO-1→LUMO (11%)	¹ MC/ ¹ LMCT/ ¹ IL	
S_2	436 (2.85)	0.0526	HOMO-1→LUMO (48%)	¹ MC/ ¹ LMCT/ ¹ IL	
			HOMO-6→LUMO (12%)	¹ MC/ ¹ LMCT/ ¹ IL	
S ₃	432 (2.87)	0.0664	HOMO→LUMO+1 (53%)	¹ MC/ ¹ LMCT/ ¹ IL/ ¹ LLCT	
			HOMO-1→LUMO+1 (13%)	¹ MC/ ¹ LMCT/ ¹ IL/ ¹ LLCT	
S ₁₆	381 (3.25)	0.9183	HOMO-2→LUMO+1 (18%)	¹ LMCT/ ¹ LLCT/ ¹ IL/ ¹ MC	368
			HOMO-3→LUMO (17%)	¹ LMCT/ ¹ IL/ ¹ LLCT	
S ₂₆	363 (3.41)	0.3998	HOMO-1→LUMO+8 (19%)	¹ MC/ ¹ LMCT/ ¹ LLCT/ ¹ IL	350
			HOMO→LUMO+7 (14%)	¹ MC/ ¹ LMCT/ ¹ LLCT	

Table S4. The Partial Molecular Orbital Compositions (%) by SCPA Approach and Emission Transitions in the Lowest-Energy Triplet State for Ag₃Cu₅ Cluster Complex in the CH₂Cl₂ Solution Calculated by TD-DFT Method at the PBE1PBE Level.

orbital	energy (eV)	MO Contribution (%)			
		Cu (s/p/d)	Ag (s/p/d)	dpppy	ebzcz
LUMO	-2.30	20.83 (25/67/8)	19.31 (77/12/11)	53.52	6.34
НОМО	-5.38	38.84 (16/6/78)	5.70 (70/6/24)	8.55	46.90
state	<i>E</i> , nm (eV)	O.S. transition (contrib.)		assignment	measured (nm)

HOMO->LUMO (74%)

³LLCT^{/3}MC

592 (2.09)

0.0000

 T_1

590

Fig. S1 The ¹H NMR spectrum of Ag₃Cu₅ cluster compound in CD₂Cl₂ solution at ambient temperature.

Fig. S2 The ³¹P NMR spectrum of Ag₃Cu₅ cluster compound in CD₂Cl₂ solution at ambient temperature.

Fig. S3 The high-resolution mass spectrometry of Ag_3Cu_5 cluster compound. Inset: The measured (green) and simulated (red) isotopic patterns.

Fig. S4 The plot of thermogravimetric analysis of Ag₃Cu₅ cluster compound.

Fig. S5 The calculated (blue bars) and experimentally measured (black line) absorption spectra of Ag_3Cu_5 cluster compound in CH_2Cl_2 solution at ambient temperature, calculated by TD-DFT method at the PBE1PBE level.

Fig. S6 The excitation and emission spectra of Ag_3Cu_5 cluster compound in solid state (black) and film (red) at room temperature.

Fig. S7 The luminescent decay curves of Ag_3Cu_5 cluster compound in CH_2Cl_2 , powder and film states at room temperature.

LUMO+1

LUMO

НОМО

HOMO-1

HOMO-2

HOMO-3

Fig. S8 Plots of the frontier molecular orbitals involved in the absorption transition (isovalue = 0.02) for Ag₃Cu₅ cluster compound by TD-DFT method at the PBE1PBE level.