Supplementary Information

Electron transport in chalcogenide perovskite BaZrS$_3$

Eric Osei-Agyemang1, Nikhil Koratkar,2 and Ganesh Balasubramanian1,*

1 Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, PA 18015, USA

2 Department of Mechanical, Aerospace and Nuclear Engineering and Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Figure S1. Power factor (PF) of BaZrS$_3$ against carrier concentration n_H at different temperatures. Here, we note that the highest PF values are achieved at 10^{21} cm$^{-3}$.

* Corresponding author. Email: bganesh@lehigh.edu, Phone: +1 610 758 3784; Address: Packard Laboratory 561, 19 Memorial Drive West, Bethlehem, PA 18015, USA.
Figure S2. Upper limit of the thermoelectric figure of merit (ZT_e) against carrier concentration at different temperatures for BaZrS$_3$. The highest ZT_e values are achieved at 10^{15} cm$^{-3}$ to 10^{18} cm$^{-3}$ for p- and n-type doping at $T > 100$ K.

Figure S3. The variation of ZT_e with temperature at different carrier concentrations of 1×10^{17} cm$^{-3}$ to 9×10^{17} cm$^{-3}$ for BaZrS$_3$. The highest ZT_e values are obtained at a carrier concentration of 1×10^{17} cm$^{-3}$ at all temperatures.
Figure S4. Transport properties against temperature for n-type doping at carrier concentrations of 10^{17} cm$^{-3}$ for BaZrS$_3$. Anisotropic effects are observed for S, σ and κ_e.