Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Electron transport in chalcogenide perovskite BaZrS₃

Eric Osei-Agyemang¹, Nikhil Koratkar,² and Ganesh Balasubramanian^{1,*}

¹ Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, PA 18015, USA

² Department of Mechanical, Aerospace and Nuclear Engineering and Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Figure S1. Power factor (*PF*) of BaZrS₃ against carrier concentration n_H at different temperatures. Here, we note that the highest *PF* values are achieved at 10^{21} cm⁻³.

^{*} Corresponding author. Email: <u>bganesh@lehigh.edu.</u> Phone: +1 610 758 3784;

Address: Packard Laboratory 561, 19 Memorial Drive West, Bethlehem, PA 18015, USA.

Figure S2. Upper limit of the thermoelectric figure of merit (ZT_e) against carrier concentration at different temperatures for BaZrS₃. The highest ZT_e values are achieved at 10¹⁵ cm⁻³ to 10¹⁸ cm⁻³ for *p*- and *n*-type doping at T > 100 K.

Figure S3. The variation of ZT_e with temperature at different carrier concentrations of 1×10^{17} cm⁻³ to 9×10^{17} cm⁻³ for BaZrS₃. The highest ZT_e values are obtained at a carrier concentration of 1×10^{17} cm³ at all temperatures.

Figure S4. Transport properties against temperature for *n*-type doping at carrier concentrations of 10^{17} cm⁻³ for BaZrS₃. Anisotropic effects are observed for *S*, σ and κ_e .