ESI

Wafer-sized 2D Perovskite Single Crystal Thin Film for UV Photodetector

Sheng Wang, ^{ab} Yuan Chen, ^{*b} Junjie Yao,^b Guoxiang Zhao,^b Longzhi Li, ^{*a} Guifu

Zou*^{ab}

^a College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, P.R. China.

^b College of Energy, Soochow Institute for Energy and Materials Innovations,

and Key Laboratory of Advanced Carbon Material and Wearable Energy

Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P.R.

China.

*Correspondence and requests for materials should be addressed to:

- Y. Chen: email: ychen216@stu.suda.edu.cn
- L.Z. Li: email: lilongzhi630@163.com
- G.F. Zou: email: zouguifu@suda.edu.cn

Fig. S1 Schematic illustration of the growth of BA_2PbBr_4 single crystal thin films by a gasliquid interface crystalline route.

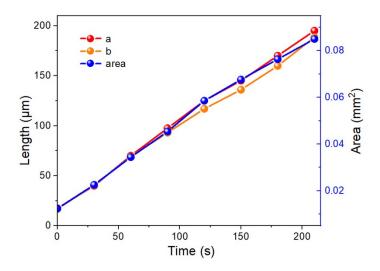
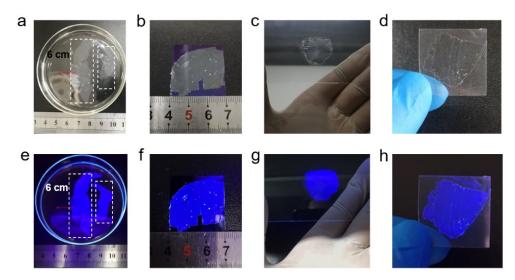



Fig. S2 The length and area of the BA₂PbBr₄ SCTF change with time.

Fig. S3 Photographs of the BA_2PbBr_4 SCTF. (a) BA_2PbBr_4 SCTF in solution (b) transferred on SiO₂ (c) glass (d) PET. (e-f) Photographs corresponding to the above one by one under strong UV lamp, the excitation wavelength is 375 nm.

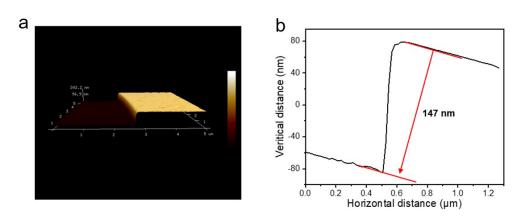
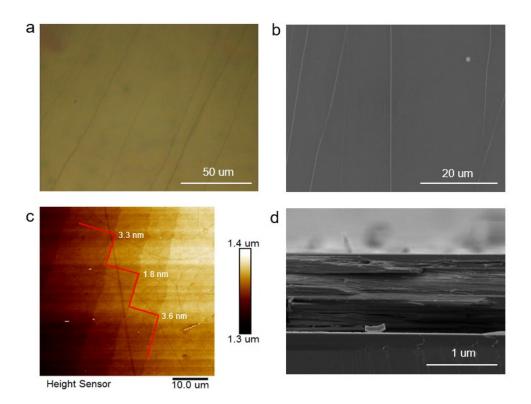



Fig. S4 (a) 3D AFM topographic of a BA_2PbBr_4 SCTF. (b) Height profile of the line scan.

Fig. S5 (a) Optical image of the BA_2PbBr_4 crystalline surface. (b) SEM image of the BA_2PbBr_4 crystalline top view. (c) AFM image of a BA_2PbBr_4 crystalline surface. (d) Cross-sectional SEM image of layered BA_2PbBr_4 crystal.

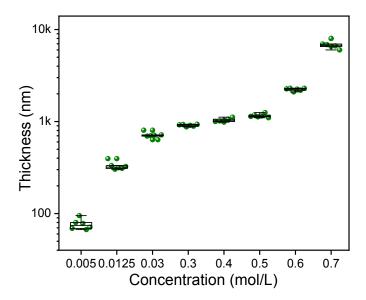
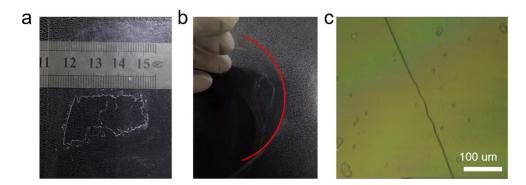
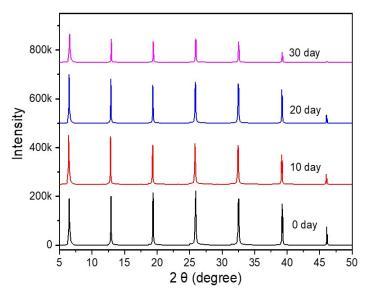
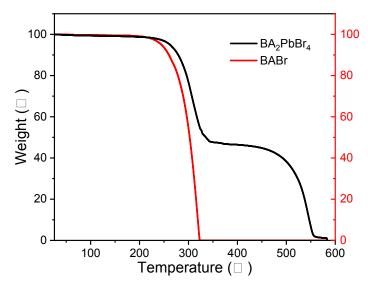
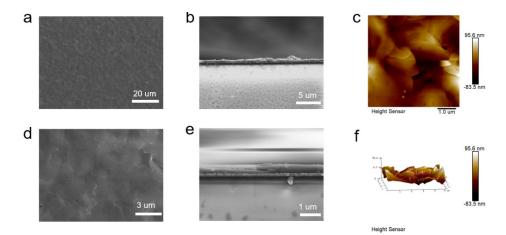
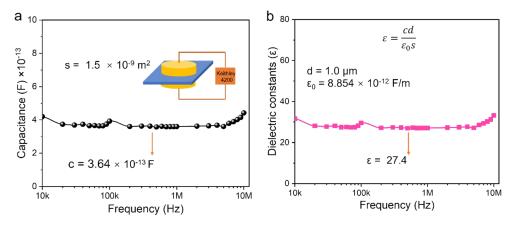



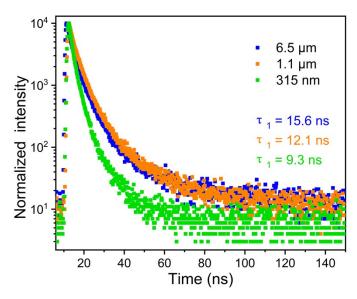
Fig. S6 Statistics of film thickness under different concentrations.

Fig. S7 (a) A complete BA_2PbBr_4 SCTF transferred to PET substrates. (b) The photograph showing the flexing angle for the BA_2PbBr_4 SCTF. (c) Photograph of the BA_2PbBr_4 SCTF after bending.

Fig. S8 HAADF imaging and corresponding STEM-EDS elemental mapping of Br, C, N and Pb, respectively.


Fig. S9 XRD patterns of BA_2PbBr_4 perovskite stored for 30 days under ambient environment.


Fig. S10 The thermal stability of the BA_2PbBr_4 and BABr crystal powder measured using thermogravimetric.

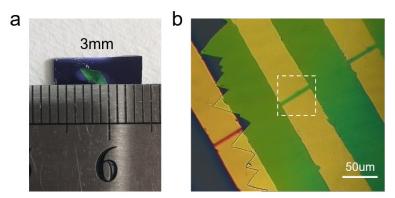

Fig. S11 (a, d) SEM image of the BA₂PbBr₄ polycrystalline film top view with different scale bar. (b, e) Cross-sectional SEM image of BA₂PbBr₄ polycrystalline film with different scale bar. (c, f) AFM image of a BA₂PbBr₄ polycrystalline film surface.

Fig. S12 (a) The capacitance and (b) dielectric constant dependent frequency curves of the BA₂PbBr₄ SCTF. Devices were fabricated by depositing ~100 nm thick Au on two opposite surfaces of the BA₂PbBr₄ SCTF. The thickness of the SCTF is 1 μ m. The area is 1.5 ×10⁻⁹ m².

Fig. S13 Time-dependent PL decay curve of BA_2PbBr_4 SCTF with different thickness, the excitation laser beam wavelength is 375 nm.

Fig. S14 (a) A photograph of BA_2PbBr_4 SCTF on Si/SiO₂ substrate. (b) The test object illustration of the photosensor.