Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information of:

Magnetic monolayer of Elemental 2D Metals

Yinti Ren,^{1,2} Liang Hu,² Yangfan Shao,² Yijian Hu,² Li Huang,² and Xingqiang Shi^{3,*}

¹Harbin Institute of Technology, Harbin 150080, China

²Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China

³ Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science

and Technology, Hebei University, Baoding 071002, China

*E-mail: shixq20hbu@hbu.edu.cn

FIG. S1. The three 2D lattice structures. Yellow spheres denote metal atoms; black lines indicate the supercells constructed to consider different magnetic configurations. Note that a supercell is needed to consider the anti-ferromagnetic configurations.

		•
Elements	Structures	Experiment/Theory
Fe (in graphene nanopores)	sq	Experiment ¹
Mo (in monolayer MoSe ₂ nanopores)	hex	Experiment ²
Sn (on Cu(111))	hc	Experiment ³
Au (in bulk Au-Ag alloy nanopores)	hex	Experiment ⁴
Pb/In (on Si(111))	hex/sq	Experiment ⁵
Hf (on Ir(111))	hc	Experiment ⁶
Cr	hex, sq, hc	Experiment and Theory ⁷
Au	hc	Theory ⁸
Ag	hex, sq, hc	Theory ⁹

Table S1. Some 2D metals and their structure types, for both theoretical and experimental works.

FIG. S2. DOE analysis of (a) bulk Fe and (b) hc Fe in three magnetic structures (nonmagnetic, FM, AFM). The fermi energy was set to zero (E_f). E_{band} represent the energy integral of the DOE in a energy range (Eq. 2 in the main text).

FIG. S3. Extended energy-range DOE analysis of (a) bulk Fe and (b) hc Fe in the three magnetic structures. The Fermi energy (E_F) was set to zero. E_{band} represent the energy integral of the DOE in a energy range including semicore states.

Reference

1. Zhao, J.; Deng, Q.; Bachmatiuk, A.; Sandeep, G.; Popov, A.; Eckert, J.; Rümmeli, M. H. *Science* **2014**, 343, (6176), 1228.

2. Zhao, X.; Dan, J.; Chen, J.; Ding, Z.; Zhou, W.; Loh, K. P.; Pennycook, S. J. Advanced Materials 2018, 30, (23), 1707281.

3. Deng, J.; Xia, B.; Ma, X.; Chen, H.; Shan, H.; Zhai, X.; Li, B.; Zhao, A.; Xu, Y.; Duan, W.; Zhang, S.-C.; Wang, B.; Hou, J. G. *Nature Materials* **2018**, 17, (12), 1081-1086.

- 4. Wang, X.; Wang, C.; Chen, C.; Duan, H.; Du, K. Nano Letters 2019, 19, (7), 4560-4566.
- 5. Zhang, T.; Cheng, P.; Li, W.-J.; Sun, Y.-J.; Wang, G.; Zhu, X.-G.; He, K.; Wang, L.; Ma, X.; Chen, X.; Wang, Y.; Liu, Y.; Lin, H.-Q.; Jia, J.-F.; Xue, Q.-K. *Nature Physics* **2010**, 6, 104.
- 6. Li, L.; Wang, Y.; Xie, S.; Li, X.-B.; Wang, Y.-Q.; Wu, R.; Sun, H.; Zhang, S.; Gao, H.-J. *Nano Letters* **2013**, 13, (10), 4671-4674.

7. Ta, H. Q.; Yang, Q. X.; Liu, S.; Bachmatiuk, A.; Mendes, R. G.; Gemming, T.; Liu, Y.; Liu, L.; Tokarska, K.; Patel, R. B.; Choi, J.-H.; Rümmeli, M. H. *Nano Letters* **2020**, *20*, *(6)*, 4354-4361.

8. Liu, N.; Jin, S.; Guo, L.; Wang, G.; Shao, H.; Chen, L.; Chen, X. *Physical Review B* **2017**, 95, (15), 155311.

9. Yang, L.-M.; Frauenheim, T.; Ganz, E. *Physical Chemistry Chemical Physics* 2015, 17, (30), 19695-19699.