Supporting Information

Multicomponent Fe-based composites derived from oxidation and reduction of Prussian blue towards efficient electromagnetic wave absorption

Wei Liu,^{ab} Pengtao Duan,^{ab} Hanwu Xiong,^c Hailin Su,^{*ab} Xuebin Zhang,^{*ab} Jinzhi Wang,^{*d} Fuyao Yang^e and Zhongqiu Zou^{ab}

a School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, China

b Anhui Red Magneto-electric Technology Co., Ltd., Wuhu, 241002, China

c State Grid Corporation of China, Beijing, 100031, China

d School of Materials and Chemistry Engineering, Ningbo University of Technology, Ningbo, 315211, China

e State Key Laboratory of Advanced Power Transmission Technology, Global Energy Interconnection Research Institute Co., Ltd., Beijing, 102211, China

Corresponding Author

Email: hailinsu@hfut.edu.cn; zzhhxxbb@126.com; wangjz@nbut.edu.cn

Fig. S1 SEM images of Fe₂O₃ derived from Prussian blue at (a,b) 350 $^{\circ}$ C, (c,d) 550 $^{\circ}$ C

and (e,f) 650 °C.

Fig. S2 (a) Fe 2p and (b) O 1s XPS spectra of reduced products. High resolution Fe 2p XPS spectra of (c) CR-0.2 and (d) CR-0.6.

Fig. S3 (a) TEM image and (b) HRTEM image of CR-0.2. (c) TEM image and (d) HRTEM image of CR-0.6.

Fig. S4 (a) Magnetic hysteresis loops and (b) enlarged hysteresis loops of reduced products.

 Table S1 Comparison of microwave absorption performance of similar microwave

 absorbing materials

samples	filling ratio (wt%)	thickness (mm)	RL (dB)	EAB (GHz)	Ref.
FeCo@C@CNGs	50	2	-67.8	5.3	1
Fe ₃ Si/SiC@SiO ₂	30	2.4	~-18	5.4	2
Fe/Fe ₃ O ₄ @TCNFs@TiO 2	15	1.6	-44.8	3.7	3
CN-Fe ₃ C	10	2	-46.78	5.01	4
Fe ₃ O ₄ @C	60	2	-28.9	5.5	5
ZnNiC	50	1.6	-66.1	4.4	6
Fe ₃ O ₄ @NPC@rGO	25	2	-72.6	5.5	7
Co/N/C@MnO ₂	15	3.7	-58.9	5.5	8

CoNi@NC@rGO	25	2.5	-	6.7	9
Fe-NiS ₂ /NiS	20	1.7	~-18	3.8	10
(SiC/Fe)@C	25	1.95	-63.44	7	11
Mo ₂ N@CoFe@C/CNT	20	2	-53.5	5	12
	40	1.5	15.07	5 44	this
CK-0.0	40	1.3	-13.27	3.44	work

References

1 F. Wang, N. Wang, X. Han, D. Liu, Y. Wang, L. Cui, P. Xu and Y. Du, *Carbon*, 2019,
145, 701-711.

2 M. Zhang, Z. Li, T. Wang, S. Ding, G. Song, J. Zhao, A. Meng, H. Yu and Q. Li, *Chem. Eng. J.*, 2019, **362**, 619-627.

3 J. Wang, Y. Cui, F. Wu, T. Shah, M. Ahmad, A. Zhang, Q. Zhang and B. Zhang, *Carbon*, 2020, **165**, 275-285.

4 S. Gao, S. H. Yang, H. Y. Wang, G. S. Wang and P. G. Yin, *Carbon*, 2020, **162**, 438-444.

5 S. Gao, Y. Zhang, H. Xing and H. Li, Chem. Eng. J., 2020, 387, 124149.

6 P. Miao, J. Cao, J. Kong, J. Li, T. Wang and K. J. Chen, *Nanoscale*, 2020, **12**, 13311-13315.

7 Z. Xiang, J. Xiong, B. Deng, E. Cui, L. Yu, Q. Zeng, K. Pei, R. Che and W. Lu, J. Mater. Chem. C, 2020, **8**, 2123-2134.

8 R. Wang, M. He, Y. Zhou, S. Nie, Y. Wang, W. Liu, Q. He, W. Wu, X. Bu and X.

Yang, Carbon, 2020, 156, 378-388.

- 9 X. Xu, F. Ran, Z. Fan, Z. Cheng, T. Lv, L. Shao and Y. Liu, ACS Appl. Mater. Interfaces, 2020, 12, 17870-17880.
- 10 N. Gao, W. P. Li, W. S. Wang, D. P. Liu, Y. M. Cui, L. Guo and G. S. Wang, ACS Appl. Mater. Interfaces, 2020, **12**, 14416-14424.
- 11 M. Javid, X. Qu, F. Huang, X. Li, A. Farid, A. Shah, Y. Duan, Z. Zhang, X. Dong and L. Pan, *Carbon*, 2021, **171**, 785-797.
- 12 C. Xu, L. Wang, X. Li, X. Qian, Z. Wu, W. You, K. Pei, G. Qin, Q. Zeng, Z. Yang,
- C. Jin and R. Che, Nano-Micro Lett., 2021, 13, 47.