Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information for 2D hybrid $CrCl_2(N_2C_4H_4)_2$ with tunable ferromagnetic half-metallicity

Wentao Hu,¹ Ke Yang,^{2,1} Alessandro Stroppa,^{3,4,*} Alessandra Continenza,⁴ and Hua Wu^{1,5,†}

¹Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China

²College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

³Consiglio Nazionale delle Ricercheâ CNR-SPIN, 67100 - Coppito (L'Aquila), Italy.

⁴Department of Physical and Chemical Sciences,

Università degli Studi dell'Aquila, 67100 - Coppito (L'Aquila), Italy

⁵Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China

Table S1. Relative total energy ΔE (meV/f.u.) and lattice constants (a, b, and c in unit of Å) for bulk structures α , β , γ , and δ of CrCl₂(pyrazine)₂ with full structural optimization, see also Fig. 5 in the main text. The optimized lattice constants of the most stable α structure agree well with the experimental ones of a = 6.90 Å, b = 6.97 Å and c = 10.83 Å (Ref. 37).

Bulk	ΔE	a	b	с	_
α	0	6.87	6.88	10.36	
β	248	6.93	6.94	10.45	
γ	$\rightarrow \alpha$				
δ	$\rightarrow \alpha$				

Fig. S1. Band structure of bulk $CrCl_2(pyrazine)_2$ calculated by (a) GGA +U and (b) GGA+U+SOC. Band structure of monolayer $CrCl_2(pyrazine)_2$ calculated by (c) GGA +U and (d) GGA+U+SOC. The blue (red) lines stand for the up (down) spin. The Fermi level is set at zero energy.

Fig. S2. Band structure of bulk $CrCl_2(pyrazine)_2$ calculated by (a) GGA + U and (b) HSE06. Band structure of monolayer $CrCl_2(pyrazine)_2$ calculated by (c) GGA + U and (d) HSE06. The blue (red) lines stand for the up (down) spin. The Fermi level is set at zero energy.