VS₂@N-doped carbon hybrid with strong interfacial interaction for high-performance rechargeable aqueous Zn-ion batteries

Jiapeng Liu^a, Wenchao Peng^b, Yang Li^b, Fengbao Zhang^band Xiaobin Fan^b*

^a School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization

Hebei University of Technology, Tianjin 300130, China

^b School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering,

Tianjin University, Tianjin 300072, China

E-mail: xiaobinfan@tju.edu.cn

Figure S1. Representative high-resolution TEM of the VS₂@N-C hybrid.

Materials	Specific capacity (Current density; A g^{-1})	Capacity retention (cycles numbers)	Ref
VS ₂ nanosheets	143.3 (0.1)	83.6% (350)	1
Rose-like VS ₂	190.3 (0.05)	98% (200)	2
VS_2 Nanosheet	150 (0.05)	83% (100)	3
Defective VS ₂	220 (0.5)	96% (100)	4
VS ₂ @VOOH	184.2 (0.05)	86% (200)	2
VS ₂ @SS	187 (0.1)	90% (200)	5
VS ₄ powder	210 (1)	85% (500)	6
Rice kernel like VS ₄	135 (1)	67.4% (100)	7
VS ₄ @rGO	180 (1)	93.3% (165)	7

Table S1. The comparison of aqueous Zn-ion batteries performance for $VS_2@N-C$ hybrid with other vanadium sulfide based materials.

Figure S2. Electrochemical impedance spectroscopy of VS₂@N-C hybrid.

Figure S3. Galvanostatic charge/discharge curves of the initial five cycles at 100 mA

 g^{-1} .

Rferences

- J. Zhu, T. Jian, Y. Wu, W. Ma, Y. Lu, L. Sun, F. Meng, B. Wang, F. Cai, J. Gao, G. Li, L. Yang, X. Yan and C. Xu, *Appl. Surf. Sci.*, 2021, **544**, 148882.
- 2. X. Pu, T. Song, L. Tang, Y. Tao, T. Cao, Q. Xu, H. Liu, Y. Wang and Y. Xia, *J. Power Sources*, 2019, **437**, 226917.
- 3. P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An and L. Mai, *Adv. Energy Mater.*, 2017, 7, 1601920.
- 4. B.-S. Yin, S.-W. Zhang, T. Xiong, W. Shi, K. Ke, W. S. V. Lee, J. Xue and Z.-B. Wang, *New J. Chem.*, 2020, **44**, 15951-15957.
- T. Jiao, Q. Yang, S. Wu, Z. Wang, D. Chen, D. Shen, B. Liu, J. Cheng, H. Li, L. Ma, C. Zhi and W. Zhang, *J. Mater. Chem. A*, 2019, 7, 16330-16338.
- 6. Q. Zhu, Q. Xiao, B. Zhang, Z. Yan, X. Liu, S. Chen, Z. Ren and Y. Yu, J. Mater.

Chem. A, 2020, **8**, 10761-10766.

7. H. Qin, Z. Yang, L. Chen, X. Chen and L. Wang, *J. Mater. Chem. A*, 2018, **6**, 23757-23765.