Supporting Information for:

Porosity induced rigidochromism in platinum(II) terpyridyl luminophores immobilized at silica composites

Amie E. Norton,^{1,2,*} Kassio P. S. Zanoni,^{3,4} Marie-Anne Dourges,⁵ Leandro P. Ravaro,³ Mahmood

K. Abdolmaleki,^{1,6} Andrea S. S. de Camargo,³ Thierry Toupance,⁵, William B. Connick,^{1,a} and Sayandev Chatterjee^{7,*}

¹Department of Chemistry, University of Cincinnati, Cincinnati, OH 45220.

²Present Address: USDA-ARS Grain Quality and Structure, 1515 College Ave. Manhattan, KS 66503; *Email: amie.norton@usda.gov.*

³Laboratório de Espectroscopia de Materiais Funcionais (LEMAF), Instituto de Física de São Carlos, Universidade de São Paulo, 13566-590, São Carlos – SP, Brazil.

⁴Present Address: Molecular Opto-Electronic Devices (MOED), Instituto de Ciencia Molecular, Parque Científico, Universidad de Valencia, 46980 Paterna, Spain.

⁵Univ. Bordeaux, Institute of Molecular Sciences, UMR 5255 CNRS, 351 Cours de la Libération, F-33405 Talence Cédex, France.

⁶Present Address: Department of Biology and Chemistry, Texas A&M International University, Laredo, TX, 78041, USA.

⁷ESSENCE Diagnostics LLC, Livingston, NJ 07039; *Email: sayandev@essencediagnostics.com* ^aIn memoriam of Dr. William B. Connick who passed away May 18, 2018.

Content	Pages
Fig. S1 Mass spectrum of $1 \cdot PF_6$ post its deposition as a thin film	2
Fig. S2 Photographs of vials conataining 1 •PF ₆ and the CPGs pre 1 •PF ₆ loading, and	2
1•PF ₆ @CPGs post loading	
Fig. S3 Emission spectra of $1 \cdot PF_6$ (λ_{ex} =436 nm)	3
Fig. S4 Emission spectra of 1•PF6@CPGs excited at different wavelengths	3
Fig. S5 Normalized excitation spectra of $1 \cdot PF_6$ (a) CPGs monitored at $\lambda_{em} = 550$ nm	4
Fig. S6 Emission spectra of 1 •PF ₆ @CPGs over 3 cycles of 1 •PF ₆ loading onto the	4
CPGs	
Fig. S7 Emission spectra of 1 •PF ₆ @CPGs based on drying times post 1 •PF ₆ loading	5
Fig. S8 Emission spectra of $1 \cdot PF_6$ (2) CPGs with different solvents used for $1 \cdot PF_6$	5
loading	
Fig. S9. Emission spectra of $1 \cdot PF_6$ (α) CPGs ($\lambda_{ex} = 436$ nm) recorded at different times	6
Fig. S10 X-ray powder diffractograms of 1 •PF ₆ @CPGs	6
Fig. S11 X-ray powder diffractograms of 1 •ClO ₄ •H ₂ O@CPGs	7
Fig. S12 A plot of the mean size of the ordered crystalline domains calculated using	7
Scherrer equation versus the mean pore sizes of the CPGs	
Fig. S13 A plot of the ratios of the intensity ratios of the ~550 nm and the ~650 nm	8
emission bands for 1•PF ₆ @CPGs (λ_{ex} =436 nm) versus the mean size of the ordered	
crystalline domains	

Figure S1. Mass spectrum of $1 \cdot PF_6$ post its deposition as a thin film from evaporation of a solution of DMSO: acetone on a microscopic glass slide

Figure S2. Photographs of (left panel) vials conataining $1 \cdot PF_6$ in DMSO:acetone (10 mg/10 ml) and the CPGs pre $1 \cdot PF_6$ loading, and (right panel) $1 \cdot PF_6$ @CPGs post loading. The colors of the $1 \cdot PF_6$ @CPGs are observed shift to lower wavelengths as the CPG pore size increases.

Figure S3. Emsision spectra of 1•PF₆@silica composites comapred to pristine 1•PF₆ (λ_{ex} =436 nm). Solid lines: (-----) CPG-1599 Å, (-----) CPG-1057 Å, (-----) CPG-537 Å, (-----) CPG-383 Å, (-----) CPG-70 Å, (-----) MCM-41, (-----) NP-SiO₂; dashed lines (-----)1•PF₆ crystalline sample, (-----) Average large area emission collected using fluorimeter on a thin film of 1•PF₆ generated from DMSO:acetone solution. The detailed emission on the 1•PF₆ thin film collected using a laser source is shown in the main paper **Figure 7**.

Figure S4. Emission spectra of 1-PF₆@CPGs excited at different wavelengths (blue) $\lambda_{ex} = 370$ nm, (green) $\lambda_{ex} = 410$ nm, (red) $\lambda_{ex} = 436$ nm.

Figure S5. (left panel) Normalized excitation spectra of $1 \cdot PF_6$ @CPGs monitored at $\lambda_{em} = 550$ nm: (_____) CPG-1057 Å, (_____) CPG-537 Å, (_____) CPG-383 Å. (right panel) Ratio of the excitation bands at 448/368 vs pore size. The equation of the line: $I_{448 \text{ nm}}/I_{368 \text{ nm}} = -0.0003 \times \text{pore size} + 1.1637$.

Figure S6. Emission spectra of 1•PF₆@CPGs over 3 cycles of 1•PF₆ loading onto the CPGs recorded after each cycle ($\lambda_{ex} = 436$ nm)

Figure S7. Emission spectra of $1 \cdot PF_6$ @CPGs ($\lambda_{ex} = 436 \text{ nm}$) based on drying times post $1 \cdot PF_6$ loading: (-----) CPG-1599 Å, (-----) CPG-1057 Å, (-----) CPG-537 Å, (-----) CPG-383 Å. (solid lines) dried for 4 hours and (dashed lines) dried for 12 hours.

Figure S8. Emission spectra of $1 \cdot PF_6$ @CPGs ($\lambda_{ex} = 436 \text{ nm}$) with different solvents used for $1 \cdot PF_6$ loading: (_____) CPG-1599 Å, (_____) CPG-1057 Å, (_____) CPG-537 Å, (_____) CPG-383 Å. (solid lines) $1 \cdot PF_6$ loading from DMSO: acetone and (dashed lines) $1 \cdot PF_6$ loading from water: acetone

Figure S9. Emission spectra of $1 \cdot PF_6$ (2PGs ($\lambda_{ex} = 436 \text{ nm}$) recorded at different times: (-----) CPG-1599 Å, (-----) CPG-1057 Å, (-----) CPG-537 Å, (-----) CPG-383 Å. (solid lines) spectra collected within 15 minutes post $1 \cdot PF_6$ loading from DMSO: acetone and (dashed lines) spectra collected after 7 days post $1 \cdot PF_6$ loading from DMSO: acetone

Figure S10. X-ray powder diffractograms of $1 \cdot PF_6$ @CPGs: (top black trace) blank CPGs, (second from top purple trace) $1 \cdot PF_6$ @CPG-1599, (third from top green trace) $1 \cdot PF_6$ @CPG-1057, (second from bottom red trace) $1 \cdot PF_6$ @CPG-383, (bottom blue trace) pristine $1 \cdot PF_6$.

Figure S11. X-ray powder diffractograms of $1 \cdot \text{ClO}_4 \cdot \text{H}_2\text{O}$: (top purple trace) $1 \cdot \text{ClO}_4 \cdot \text{H}_2\text{O}$ @CPG -1599, (second from top green trace) $1 \cdot \text{ClO}_4 \cdot \text{H}_2\text{O}$ @CPG -1057, (second from bottom red trace) $1 \cdot \text{ClO}_4 \cdot \text{H}_2\text{O}$ @CPG -383, (bottom blue trace) pristine $1 \cdot \text{ClO}_4 \cdot \text{H}_2\text{O}$.

Figure S12. A plot of the mean size of the ordered crystalline domains calculated using Scherrer equation versus the mean pore sizes of the CPGs. (red symbols and trace) **1**•ClO₄•H₂O@CPGs (the analysis done at 6.2°); equation of the line: τ (nm) = -10⁻¹⁶ ×(mean pore size, Å) + 92.4; (yellow symbols and trace) **1**•PF₆@CPGs; equation of the line: τ (nm) = -0.03 ×(mean pore size, Å) + 82.6 (the analysis done at 6°)

Figure S13. A plot of the ratios of the intensity ratios of the ~550 nm and the ~650 nm emission bands for 1•PF₆@CPGs (λ_{ex} =436 nm) versus the mean size of the ordered crystalline domains calculated using Scherrer equation; equation of the line: I_{550 nm}/I_{630 nm} = -0.015×τ (nm) + 1.19.