Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

A chiral single-component sol-gel platform with highly integrated optical properties

Bin Wu, ^a Hongwei Wu, ^b Yifan Gong, ^a Anze Li, ^a Xiaoyong Jia, ^{*,c} and Liangliang Zhu^{*,a}

^a State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China

^b College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China

^c Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China

Table of Contents

¹ H, ¹³ C NMR, and MS Spectra for Compounds	3
Solvent ratio test between DMSO and toluene for gel formation	7
FTIR spectra of xerogel of HTB-DG	8
XRD pattern of xerogel of HTB-DG	8
Time-dependent CD spectra of HTB-D/LG organogel	9
AFM images of HTB-DG and HTB-LG xerogels	10
TEM images of HTB-DG and HTB-LG xerogels	11
Simulation of the length of HTB-D/LG molecule	11
UV-Vis and CD spectra of dilute HTB-D/LG solution	12
Temperature-dependent CPL and g _{lum} spectra of HTB-DG and HTB-LG	13
UV-Vis and CD spectra of HTB-D/LG at 10 mg/mL	14
PL, CPL and g _{lum} spectra of HTB-D/LG at 10 mg/mL	
14	
SEM, AFM and TEM images of HTB-D/L xerogels at 10 mg/mL	
15	
Temperature-dependent PL and lifetime spectra of HTB-DG at 10 mg/mL	15
Comparison of chiral response with reported literatures	16
References	17

Fig. S1 ¹H NMR spectrum for compound DGAm (CDCl₃, 298 K).

Fig. S2 ¹³C NMR spectrum for compound DGAm (CDCl₃, 298 K).

Fig. S3 MALDI-TOF MS Spectrum for compound DGAm.

Fig. S4 ¹H NMR spectrum for compound HTBAc (DMSO-*d*₆, 298 K).

Fig. S5 13 C NMR spectrum for compound HTBAc (DMSO- d_6 , 298 K).

Fig. S6 MALDI-TOF MS Spectrum for compound HTBAc.

Fig. S7 ¹H NMR spectrum for compound HTB-DG (DMSO-*d*₆, 373 K).

MALDI-TOF MS Spectra for compound HTB-DG:

Fig. S8 MALDI-TOF MS Spectrum for compound HTB-DG.

Fig. S9 Solvent ratio test between DMSO and toluene for gel formation. The concentration of

HTB-DG was 3 mg/mL.

Fig. S10 FTIR spectra of HTB-DG xerogel.

Fig. S11 XRD pattern of HTB-DG xerogel.

Fig. S12 Time-dependent CD spectra of **HTB-DG** (red lines) and **HTB-LG** (blue lines), concentration: 3 mg/mL, 2 mm cuvette.

Fig. S13 AFM images of HTB-DG (a) and HTB-LG (b) xerogels showing helical self-assembly of HTB-D/LG.

Fig. S14 TEM images of HTB-DG (a) and HTB-LG (b) xerogels showing helical self-assembly of HTB-D/LG.

Fig. S15 Estimation of the length of an extended HTB-D/LG molecule calculated with Materials Studio package.

Fig. S16 UV-Vis (a) and corresponding CD (b) spectra of dilute solution of **HTB-DG** (red line) and **HTB-LG** (blue line) in DMSO/toluene (2/8, v/v) mixed solvent, concentration at 15 μ M, 1 cm cuvette.

Fig. S17 CPL spectra (a, c) and corresponding g_{lum} (b, d) curves of HTB-DG (red lines) and HTB-LG (blue lines) organogel depended on temperature ($\lambda_{ex} = 365$ nm).

Fig. S18 UV-Vis (a) and corresponding CD (b) spectra of **HTB-DG** (red line) and **HTB-LG** (blue line) organogels, concentration at 10 mg/mL, 0.1 mm cuvette.

Fig. S19 Photoluminescence (a), CPL spectra (b) and corresponding g_{lum} curves (c) for **HTB-DG** (red line) and **HTB-LG** (blue line) organogels ($\lambda_{ex} = 365$ nm), concentration: 10 mg/mL.

Fig. S20 SEM (a and c), AFM (b and e) TEM (c and f) images for **HTB-DG** (top) and **HTB-LG** (bottom) xerogels, concentration at 10 mg/mL.

Fig. S21 Temperature-dependent photoluminescence (a) and lifetime (b) spectra of **HTB-DG** organogel ($\lambda_{ex} = 365$ nm), concentration at 10 mg/mL. Insets: photographs of **HTB-DG** in gel state (top) and partial sol state (bottom) under ambient light and UV light.

I	*		
Material	Chiral Response	Other Features	Ref
	thermo ON-OFF CD and CPL	gel, AIE,	this
HIB-D/LG	response	RTP	work
S-TPE-Ph-	solvent polarity driven CD and CPL		Daf S1
PEA	inversion	AIE	
DGG/DTDF	stoichiometry-controlled CD and CPL	al AIF	Pof S7
	inversion		
cis/trans-TPE-	water fraction-controlled CD and CPL	٨IF	Ref S3
L/D-DGlu	inversion in THF/water mixture		
PPA-ACe	thermo-induced helical inversion	Ba ²⁺ response	Ref S4
Molecule 2a	thermo induced believe inversion	encapsulation	Pof S5
Molecule-2a	inermo-induced nencai inversion	of C ₆₀	Kel SS
рго	chiral solvent induced CD and CPL;	aal	DofS6
PF8	thermo ON-OFF chiropticity	gei	Kel So
Doly(quinovali		sergeants-	
ro 2.2 divl	solvent-dependent helix inversion	and-soldiers	Ref S7
ne-2,5-aiyi)		effect	
Doly 1 U	chiral amine induced macromolecular	helicity	DofSQ
гогу-1-п	helicity and chiropticity	memory	
$(2^{\circ}S) (D/M) 2$	light controlled chiroptical switch (UV	liquid	
(2 5)-(P/M)-5-	and visible light)	crystalline	Ref S9
		phase	
τρα ςρα	CPI irradiation induced helicity	photopolyme	PofS10
11 A-5DA		rization	
	helical sense tuning by mono- and	dynamic	
Poly-R-MPA	divalent metals	helical	Ref S11
		polymers	
BTACA	vortex mixing-induced CD and CPL	gel	Ref S12

|--|

References

- S1. Q. Ye, F. Zheng, E. Q. Zhang, H. K. Bisoyi, S. Y. Zheng, D. D. Zhu, Q. H. Lu, H. L. Zhang and Q. Li, *Chem. Sci.*, 2020, **11**, 9989-9993.
- S2. P. Li, B. Lu, D. Han, P. Duan, M. Liu and M. Yin, *Chem. Commun.*, 2019, **55**, 2194-2197.
- S. Zhang, J. Fan, Y. Wang, D. Li, X. Jia, Y. Yuan and Y. Cheng, *Mater. Chem. Front.*, 2019, 3, 2066-2071.
- F. Wang, C. Zhou, K. Liu, J. Yan, W. Li, T. Masuda and A. Zhang, *Macromolecules*, 2019, 52, 8631-8642.
- S5. Z. Huang, S. K. Kang, M. Banno, T. Yamaguchi, D. Lee, C. Seok, E. Yashima and M. Lee, *Science*, 2012, **337**, 1521-1526.
- S6. Y. Zhao, N. A. Abdul Rahim, Y. Xia, M. Fujiki, B. Song, Z. Zhang, W. Zhang and X. Zhu, *Macromolecules*, 2016, **49**, 3214-3221.
- Y. Nagata, T. Yamada, T. Adachi, Y. Akai, T. Yamamoto and M. Suginome, *J. Am. Chem. Soc.*, 2013, **135**, 10104-10113.
- K. Maeda, M. Nozaki, K. Hashimoto, K. Shimomura, D. Hirose, T. Nishimura, G. Watanabe and E. Yashima, J. Am. Chem. Soc., 2020, 142, 7668-7682.
- D. Pijper, M. G. M. Jongejan, A. Meetsma and B. L. Feringa, J. Am. Chem. Soc., 2008, 130, 4541-4552.
- J. Kim, J. Lee, W. Y. Kim, H. Kim, S. Lee, H. C. Lee, Y. S. Lee, M. Seo and S. Y. Kim, *Nat. Commun.*, 2015, 6, 6959.
- S11. F. Freire, J. M. Seco, E. Quinoa and R. Riguera, *Angew. Chem. Int. Ed.*, 2011, **50**, 11692-11696.
- S12. Y. Sang, D. Yang, P. Duan and M. Liu, *Chem. Sci.*, 2019, **10**, 2718-2724.