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1 Monte Carlo simulations

Methodology

Metropolis Monte Carlo (MC) simulations were carried out using custom code based on that employed in

Ref. S1 The fundamental degrees of freedom in all simulations were the MDABCO orientations, which

were treated as classical unit spin vectors Si arranged on a simple cubic lattice. The Si were nearly

always treated as Potts states; i.e. only a fixed number of possible orientations were possible for a given

model—usually the eight possible 〈111〉 vectors. We discuss below the implications of using Heisenberg

degrees of freedom with strong single-ion anisotropy. In general we used simulation boxes containing

an 8× 8× 8 supercell of the primitive aristotypic cell (i.e. 512 ‘spins’) and periodic boundary conditions

were applied. Simulations were repeated in independent multiples of five. Equilibration times were

estimated based on the number of MC steps required for the autocorrelation function to vanish within a

specified (small) limit. For a given MC temperature point, each simulation was allowed to run for ten

times as many moves as the corresponding equilibration time, and thermodynamic values were averaged

over five successive collection runs, each spaced by this same number of MC steps. This means that the

data points shown in Fig. 4(a) of the main text, for example, were each obtained as the average over 25

independent MC configurations.

MC energies were calculated using various combinations of the following various terms described in

the text:

EHB = H
∑

j∈{X}

(nj − 1)2, (1)

Edip = D
∑
i 6=j

Si · Sj − 3(Si · r̂ij)(Sj · r̂ij)
(rij/a)3

, (2)

Estrain = −J
∑
i,j

(Si · Sj)
2, (3)

Eaniso = Θ
∑
i

(S4
ix + S4

iy + S4
iz). (4)

The dipolar term was calculated using Ewald summation, giving a maximum relative error of 3.8×10−5.

Our implementation follows that of Ref. S1, which in turn is based on the implementations in Refs. S2–4.

Two types of MC simulations were carried out. On the one hand, we sought sometimes to establish

the ground state for a given interaction model. In such cases we used a simulated annealing approach as

appropriate. On the other hand, we wished to determine the temperature dependence of other interaction
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models—specifically identifying the existence and nature of order/disorder phase transitions. In such

cases we started our MC simulations at a temperature three times that of the dominant interaction term

energy, and cooled at a relative rate of either 5% or 3% between successive MC temperature steps. A

summary of the various MC simulations and their output is given in Table S1.

Effect of single-ion anisotropy

We make the point in the main text that allowing some deviation from 〈111〉 orientations in MC simula-

tions of the key dipole–dipole + strain model preserves the paraelectric/ferroelectric phase transition but

lowers the corresponding transition temperature. In support of this statement we report here the results of

a MC simulation with anisotropic Heisenberg degrees of freedom. Note that the term Eaniso [Eq. (4)] is

minimised for Si ∈ 1√
3
〈111〉, and so Θ captures the energy scale associated with deviations away from

〈111〉. The results of this anisotropic Heisenberg MC simulation are shown in Fig. S1 for two values

Θ = 5J, 10J , where they are compared against the Potts-model results given in Fig. 4(a) of the main

text.

Degrees of freedom MC Energy Type Result

8-state Potts Si ∈ 1√
3
〈111〉 EMC = EHB G. S. Fig. 2(a)

8-state Potts Si ∈ 1√
3
〈111〉 EMC = Edip G. S. Fig. 2(b)

8-state Potts Si ∈ 1√
3
〈111〉 EMC = Edip + Estrain;D = J T. D. Fig. 4(a)

12-state Potts Si ∈ 1√
2
〈110〉 EMC = Edip + Estrain;D = J T. D. Fig. 4(a)

6-state Potts Si ∈ 〈100〉 EMC = Edip + Estrain;D = J T. D. Fig. 4(a)

Anisotropic Heisenberg EMC = Edip + Estrain + Eaniso;D = J = Θ/5 T. D. Fig. S1

Anisotropic Heisenberg EMC = Edip + Estrain + Eaniso;D = J = Θ/10 T. D. Fig. S1

Table S1: Summary of MC simulations carried out as part of this study. The abbreviations ‘G.

S.’ and ‘T. D.’ denote ground-state determination and temperature dependence MC simulation

types, respectively.
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Figure S1: Temperature-dependent polarisation for the anisotropic Heisenberg MC models

with strain and dipole–dipole interactions. The 8-state Potts trace is that shown in Fig. 4(a)

of the main text. Evident here is that the same paraelectric/ferroelectric transition is observed

for Heisenberg models with single-ion anisotropies Θ = 5, 10J , albeit with a lower transition

temperature. Error bars are smaller than the symbols.
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2 Dipole–dipole and strain calculations

Coarse-grained ground state energies for Models 1–5 [Eq. (4) of the main text] were calculated using

Eqs. (2) and (3). The analytical forms of the corresponding energies and their contributions from dipole–

dipole and strain terms are collectively summarised in Table S2. Included in this table are the (fitted)

coarse-grained and DFT energies used to construct Fig. 5(b) of the main text.

Model Edip Estrain Erel Ecalc (K) EDFT (K)

1 −2.094D −3J 0 0 0

2 0 −3J 2.094D 1744 1624

3 −2.204D −2.111J −0.110D + 0.889J 719 719

4 0 −3J 2.094D 1744 1494

5 0 −3J 2.094D 1744 2113

Table S2: Analytical coarse-grained energies for each of the models 1–5 discussed in the main

text.
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3 Density functional theory calculations

Methodology

The DFT calculations were performed using the Vienna Ab Initio Simulation Package (VASP)S9–12. We

employed the optB86b-vdW exchange correlation potentialS6 which includes VdW corrections previ-

ously found to suit hybrid perovskitesS7. Projector augmented-wave (PAW) pseudopotentialsS8, S9 were

utilised, as supplied within the VASP package, with the following number of valence electrons treated

explicitly: 9 for Rb (4s24p65s1), 7 for I (5s25p5), 4 for C (2s22p2), 5 for N (2s22p3), and 1 for H (1s1).

We used a plane wave basis set with a 800 eV energy cutoff and a 3 × 3 × 3 Monkhorst-Pack k-point

mesh for the R3 structure (scaled accordingly for other supercells). Structures have been relaxed until

the forces on any ion were less than 5 meV/Å.

Relaxed structures

The crystallographic details associated with the DFT-relaxed structures for Models 1–5 are given in

Tables S3–S7. The atom labels used for MDABCO molecules are shown in Fig. S2. Atoms related to one

another in the C3v-symmetric MDABCO molecule but no longer symmetry-related in the corresponding

ABX3 polymorph are denoted by appending a suffix of the form ‘a’, ‘b’, or ‘c’.
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Figure S2: Atom labels used for the MDABCO molecule.
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Crystal class Rhombohedral

Space group R3

a (Å) 7.196

α (◦) 84.52

V (Å3) 367.82

Z 1

Erel/Z (meV) 0

Atom x y z

Rb1 0.9965 0.9965 0.9965

I1 0.0073 0.9345 0.5028

N1 0.6222 0.6222 0.6222

N2 0.4365 0.4365 0.4365

C1 0.7497 0.4674 0.5390

C2 0.6273 0.3346 0.4626

C3 0.3269 0.3269 0.3269

HN 0.6992 0.6992 0.6992

H11 0.8312 0.3962 0.6509

H12 0.8438 0.5336 0.4276

H21 0.6051 0.2092 0.5597

H22 0.6887 0.2940 0.3248

HC 0.1878 0.4016 0.3127

Table S3: Crystallographic details for the DFT relaxed structure of Model 1.
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Crystal class Rhombohedral

Space group R3̄

a (Å) 10.777

α (◦) 53.34

V (Å3) 747.04

Z 2

Erel/Z (meV) 139.93

Atom x y z

Rb1 0 0 0

Rb2 0.5 0.5 0.5

I1 0.2264 0.7273 0.2801

N1 0.3095 0.3095 0.3095

N2 0.2180 0.2180 0.2180

C1 0.4183 0.3249 0.1307

C2 0.3841 0.2361 0.0906

C3 0.1641 0.1641 0.3269

HN 0.3473 0.3473 0.3473

H11 0.5488 0.2681 0.1173

H12 0.3854 0.4589 0.0524

H21 0.3763 0.3101 −0.0333

H22 0.4788 0.1095 0.0980

HC 0.2618 0.0474 0.1447

Table S4: Crystallographic details for the DFT relaxed structure of Model 2.
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Crystal class Monoclinic

Space group Pc

a (Å) 7.163

b (Å) 7.165

c (Å) 14.486

β (◦) 84.51

V (Å3) 740.00

Z 2

Erel/Z (meV) 62.00

Atom x y z Atom x y z

Rb1 0.0046 −0.0340 0.0090 HN 0.6775 0.7373 0.3611

I1 −0.0585 0.4672 0.0114 H11a 0.3657 0.6689 0.4125

I2 0.0233 −0.0522 0.2623 H11b 0.8150 0.4405 0.3376

I3 0.5138 −0.0495 −0.0330 H11c 0.6588 0.8461 0.2114

N1 0.6100 0.6465 0.3184 H12a 0.5001 0.4575 0.4220

N2 0.4437 0.4327 0.2146 H12b 0.8464 0.5653 0.2292

C1a 0.4446 0.5577 0.3738 H12c 0.4253 0.8467 0.2706

C1b 0.7436 0.4973 0.2798 H21a 0.2031 0.5471 0.2907

C1c 0.5414 0.7584 0.2404 H21b 0.5959 0.2283 0.2816

C2a 0.6289 0.3482 0.2352 H21c 0.5852 0.5997 0.1098

C2b 0.3243 0.4612 0.3056 H22a 0.2767 0.3231 0.3314

C2c 0.4783 0.6210 0.1688 H22b 0.7026 0.3017 0.1691

C3 0.3503 0.3072 0.1512 H22c 0.3459 0.6668 0.1434

HCa 0.4405 0.2975 0.0856

HCb 0.2128 0.3659 0.1393

HCc 0.3325 0.1689 0.1834

Table S5: Crystallographic details for the DFT relaxed structure of Model 3.
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Crystal class Triclinic

Space group P 1̄

a (Å) 14.201

b (Å) 7.349

c (Å) 7.234

α (◦) 83.84

β (◦) 85.49

γ (◦) 87.19

V (Å3) 747.64

Z 2

Erel/Z (meV) 128.76

Atom x y z Atom x y z

Rb1 0 0 0 HN 0.3108 0.8008 0.6595

Rb2 0.5 0 0 H11a 0.3109 0.8792 0.3365

I1 0.2543 0.0242 0.8961 H11b 0.1602 0.7023 0.7450

I2 0 0.5 0 H11c 0.4220 0.6362 0.4410

I3 0.5 0.5 0 H12a 0.1902 0.8630 0.4335

I4 0 0 0.5 H12b 0.2410 0.5157 0.8117

I5 0.5 0 0.5 H12c 0.4059 0.5259 0.6743

N1 0.2907 0.6972 0.5817 H21a 0.3021 0.6157 0.1725

N2 0.2353 0.4533 0.3999 H21b 0.1009 0.5477 0.5089

C1a 0.2568 0.7854 0.4003 H21c 0.3770 0.3526 0.3537

C1b 0.2108 0.5987 0.6931 H22a 0.1763 0.6563 0.2064

C1c 0.3716 0.5641 0.5434 H22b 0.1490 0.3453 0.6367

C2a 0.2424 0.6329 0.2770 H22c 0.3205 0.2830 0.5793

C2b 0.1654 0.4809 0.5648 HCa 0.1344 0.3430 0.2460

C2c 0.3311 0.3987 0.4708 HCb 0.2041 0.1783 0.3857

C3 0.2053 0.3064 0.2926 HCc 0.2565 0.2947 0.1720

Table S6: Crystallographic details for the DFT relaxed structure of Model 4.
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Crystal class Triclinic

Space group P 1̄

a (Å) 7.150

b (Å) 9.848

c (Å) 10.779

α (◦) 91.39

β (◦) 94.91

γ (◦) 92.74

V (Å3) 755.01

Z 2

Erel/Z (meV) 182.11

Atom x y z Atom x y z

Rb1 0.0086 0.7443 0.2510 HN 0.3442 0.2364 0.4740

I1 0.5149 0.7280 0.2907 H11a 0.6392 0.3397 0.4687

I2 0 0 0 H11b 0.3665 0.0211 0.3795

I3 0 0.5 0.5 H11c 0.1582 0.3473 0.3188

I4 0 0.5 0 H12a 0.4789 0.4449 0.3833

I5 0 0 0.5 H12b 0.6007 0.0932 0.4203

N1 0.3919 0.2362 0.3843 H12c 0.1432 0.1693 0.2755

N2 0.5220 0.2378 0.1737 H21a 0.7794 0.2692 0.2863

C1a 0.5453 0.3462 0.3833 H21b 0.3950 0.0392 0.1616

C1b 0.4711 0.1006 0.3583 H21c 0.3479 0.4049 0.1532

C1c 0.2366 0.2619 0.2859 H22a 0.6845 0.4210 0.2237

C2a 0.6498 0.3240 0.2668 H22b 0.6433 0.0476 0.2076

C2b 0.5092 0.0942 0.2203 H22c 0.2455 0.2479 0.0850

C2c 0.3287 0.2949 0.1668 HCa 0.7364 0.2041 0.0531

C3 0.5923 0.2390 0.0472 HCb 0.4978 0.1711 −0.0147

HCc 0.5902 0.3433 0.0136

Table S7: Crystallographic details for the DFT relaxed structure of Model 5.
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4 Hydrogen bond strengths in methyldabconium perovskites

We make the point in the main text that the strongest hydrogen-bonding interaction between MDABCO

cations and the surrounding anionic perovskite cage involves the tertiary ammonium cation. While hy-

drogen bonding of these systems has been discussed in general terms, to the best of our knowledge there

is no detailed investigation of the relative strengths of different MDABCO hydrogen–cage interactions.

Consequently we employed the technique used in Ref. S5 to identify hydrogen bond strengths. The basic

approach taken is as follows. First, we identified each candidate C–H· · · I or N–H· · · I interaction on

the basis of H· · · I distances. In [MDABCO]RbI3 there are five symmetry-distinct distances of this type;

they are shown in Fig. S3 and listed in Table S8. Next, for each C–H or N–H pair, we perturbed the

corresponding separation by small distances |∆d| < 0.2 Å along the C/N–H vector, and determined the

DFT energy change as a function of ∆d. Using the harmonic approximation

∆EDFT '
1

2
k(∆d)2, (5)

we could extract from our data an effective force constant k for each candidate hydrogen bond interac-

tion. We carried out the equivalent calculation for the free MDABCO cation, and then determined the

hydrogen bond index Φ as follows:

Φ = 1−

√
kABX3

kfree
, (6)

where kABX3 is the effective force constant in [MDABCO]RbI3 and kfree is that in the free cation. The

larger the value of Φ, the stronger the corresponding hydrogen-bonding interaction.

Our data are given in Table S8, from which it is clear that the ammonium N–H. . .I interaction is the

strongest hydrogen bond (despite the existence of shorter hydrogen bond lengths within the crystal).
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Figure S3: Close hydrogen–iodine interactions in [MDABCO]RbI3; symmetry-related interac-

tions are shaded in the same colour.

Hydrogen bond Colour in Fig. S3 d(H–I) (Å) kABX3 (meV/Å2) kfree (meV/Å2) Φ (%)

N1–HN· · · I red 3.07 9.02 10.15 5.72

C1–H11· · · I blue 3.06 9.24 9.47 1.23

C1–H12· · · I orange 2.93 9.33 9.51 0.94

C2–H21· · · I green 3.00 9.19 9.46 1.44

C3–HC1· · · I yellow 2.98 9.44 9.60 0.80

Table S8: Summary of candidate hydrogen bonding interactions in [MDABCO]RbI3. Included

are the equilibrium distances d, bound and free effective force constants, and hydrogen bond

index Φ.
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5 Symmetry implications of (anti)ferroelastic distortions

In the main text we discuss the implications of ferroelastic and antiferroelastic strains for distortions

of the B-site coordination environment. We elaborate on the point here by making clear our symmetry

arguments.

In the polar ferroelastic R3 phase, the B-site cation is located on the 3a Wyckoff site, with 3. point

symmetry. The corresponding C3 axis lies normal to one pair of faces of the RbI3 octahedron. Hence the

R3 state allows any distortion of the RbI3 coordination environment that preserves this three-fold sym-

metry. This includes, in particular, rotations and anti-rotations (distortions towards a trigonal prismatic

geometry) of the polyhedron that give bending both of Rb–I–Rb and I–Rb–I bond angles.

By contrast, the competing antiferroelastic phase has I23 space group symmetry, and the B-site

cations are located on the 2a and 6b Wyckoff positions. These have 23. and 222.. point symmetry,

respectively. In both cases, two-fold rotation axes pass through each of the Rb–I bond vectors, which

constrains the corresponding Rb–I–Rb angles to be 180◦ and the I–Rb–I angles to be 90◦. Hence there

are no symmetry-allowed polyhedral rotations or bending modes in this state. We anticipate this raises

the energy of the antiferroelastic phase, which is why the strain coupling strength J is positive, rather

than negative, for [MDABCO]RbI3.
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