Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Prediction of pressure-induced superconductivity in the novel

ternary system ScCaH_{2n}(n=1-6)

Lan-Ting Shi^{1,2}, Yong-Kai Wei³, A-Kun Liang⁴, Robin Turnbull⁴, Cai Cheng⁵, Xiang-Rong Chen^{2*}, Guang-Fu Ji^{1†}

1. National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, China;

2. College of Physics, Sichuan University, Chengdu 610065, China;

- 3. College of Science, Henan University of Technology, Zhengzhou 450001, China
- 4. Departamento de Física Aplicada-ICMUV-MALTA Consolider Team, Universitat de València, c/Dr. Moliner 50, 46100 Burjassot (Valencia), Spain
- 5. School of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, China

Contents

1. Figure S1 Phonon dispersions of $ScCaH_{2n}(n=1,2,3,5)$.

2 Figure S2 The enthalpies of formation with ZPE

- 3. Figure S3 The thermodynamic stability
- 4. Figure S4 Electron localization function (ELF) and 3D structure
- 5. Figure S5 PCOHP for pairs of H...H in ScCaH8
- 5. Figure S6 Electronic band structures and density of states of ScCaH_{2n}(n=1,2,3,5).
- 6. Figure S7 T_c as a function of the empirical parameter μ^* .
- 7. Table S1 Structural data for predicted stable compounds.
- 8. Table S2 Integrated COHP (ICOHP) up to the Fermi level for H...H in ScCaH8
- 9. Table S3 The calculated EPC parameter λ , logarithmic average phonon frequency
- ω_{log} (K), and superconducting transition temperatures T_c at high pressures.

Corresponding author.

^{*}E-mail address: xrchen@scu.edu.cn (Xiang-Rong Chen)

^{*}E-mail address: cyfjkf@caep.cn (Guang-Fu Ji)

Figure S1. The phonon spectrum of $ScCaH_{2n}(n=1-3,5)$. There is absence imaginary frequency of each structure to show its dynamic stability.

Figure S2. The enthalpies of formation with ZPE of $ScCaH_{2n}(n=2-6)$ with respect to $ScCaH_2$ and H_2 at 100-300 GPa.

Figure S3. (a) The enthalpy difference curves with respect to $ScCaH_2$ as a function of pressure; (b)-(c) The enthalpy difference curves with respect to $ScCaH_4$ as a function of pressure; (d)-(f) The enthalpy difference curves with respect to $ScCaH_6$ as a function of pressure; (g)-(i) The enthalpy difference curves with respect to $ScCaH_8$ as a function of pressure; (j)-(m) The enthalpy difference curves with respect to $ScCaH_1$ as a function of pressure; (i)-(m) The enthalpy difference curves with respect to $ScCaH_1$ as a function of pressure; (n)-(r) The enthalpy difference curves with respect to $ScCaH_{12}$ as a function of pressure; (n)-(r) The enthalpy difference curves with respect to $ScCaH_{12}$ as a function of pressure.

Figure S4. The predicted crystal structures for $ScCaH_{2n}(n=1, 2)$. ELF in (-1471.49 -1 - 1) sections for $Fd\overline{3}m$ -ScCaH₂ at 150 GPa. ELF in (-1 -1 0) sections for $Fm\overline{3}m$ -ScCaH₂ at 300 GPa. ELF in (1 1 0) sections for P4/mmm-ScCaH₄ at 150 GPa. ELF in (0 0 -1) sections for P6/mmm-ScCaH₄ at 300 GPa. It is obvious that in the two structures of ScCaH₂, there is no interaction between the hydrogen atoms. In P4/mmm-ScCaH₄, there are "H₂" structures and obviously interaction between these two hydrogen atoms. In P6/mmm-ScCaH₄, graphene layered structures are formed between the hydrogen atoms and the interaction between hydrogen atoms are strong.

Figure S5. PCOHP for pairs of H...H in ScCaH₈ (a) Two hydrogen atoms connected by **a** bond (b) Two hydrogen atoms connected by **b** bond (c) Two hydrogen atoms connected by **c** bond at different pressures. Energies are normalized to the respective Fermi level. And the PCOHP for pairs of H...H in CaH6.

Figure S6. Electronic band structures and density of states of $ScCaH_{2n}(n=1-3,5)$. The results show that these compounds are all metallic. In $ScCaH_2$ and $ScCaH_4$, the contribution of hydrogen atom at Fermi level in density of States are less than that of Ca and SC atoms. In $ScCaH_6$ and $ScCaH_{10}$, the contribution of hydrogen atom at Fermi level in the DOS are obviously increased.

Figure S7. Critical temperature T_c as a function of the empirical parameter μ^* .

Compound	Space group	Lattice Parameters (Å)	Atomic coordinates (fractional)			
		(-)	Atoms	X	Y	Z
ScCaH2	Fd3m	$a=b=c=7.4515$ $\alpha=\beta=\gamma=90^{\circ}$	H(32e)	0.11746	0.88254	0.11746
			Ca(16d)	0.87500	0.87500	-0.37500
			Sc(16d)	0.62500	0.87500	0.37500
	Fm3m	a=b=c4.2574 $\alpha = \beta = \gamma = 90^{\circ}$	H(8c)	0.75000	0.25000	0.25000
			Ca(4b)	0.00000	0.00000	0.50000
			Sc(4a)	0.00000	0.00000	0.00000
ScCaH4	P4/mmm		H(2h)	0.50000	0.50000	0.15002
		a=b=c=2.38750	H(2g)	0.00000	0.00000	0.33380
		$\alpha = \beta = \gamma = 90^{\circ}$	Ca(1d)	0.50000	0.50000	0.50000
			Sc(1a)	0.00000	0.00000	0.00000
	P6/mmm	a=b=2.43200, c=4.41970 α=β=90°, γ=120°	H(4h)	0.33333	0.66667	0.26548
			Ca(1a)	0.00000	0.00000	0.00000
			Sc(1b)	0.00000	0.00000	0.50000
	P4/mmm	a=b=2.78960, c=4.02080 α=β=γ=90°	H(4i)	0.50000	0.0000	0.76734
ScCaH6			H(1c)	0.50000	0.50000	0.0000
			H(1b)	0.0000	0.0000	0.50000
			Ca(1d)	0.50000	0.50000	0.50000
			Sc(1a)	0.0000	0.0000	0.0000
ScCaH8	P4/mmm	a=b=2.59780, c=4.86800 α=β=γ=90°	H(2g)	0.00000	0.00000	0.89919
			H(4i)	0.50000	0.00000	0.23478
			H(2h)	0.50000	0.50000	0.36819
			Ca(1b)	0.00000	0.00000	0.50000
			Sc(1c)	0.50000	0.50000	0.00000
	Cmmm	a=c=4.71340, b=3.36210 α=β=γ=90°	H(8m)	0.75000	0.75000	0.77911
ScCaH ₁₀			H(80)	0.86107	-0.00000	0.61550
			H(4g)	0.37705	-0.00000	0.00000
			Ca(2c)	0.50000	0.00000	0.50000
			Sc(2a)	0.0000	0.00000	0.00000
ScCaH ₁₂	Pm3m	a=b=c=4.00260 α=β=γ=90°	H(12h)	-0.00000	0.76123	0.50000
			Ca(1a)	0.00000	0.00000	0.00000
			Sc(1b)	0.50000	0.50000	0.50000

 Table S1. Calculated structural parameters of the predicted phase for ScCaH2

Duogguno	ICOHP (eV/atom pair)					
rressure	a	b	c	CaH ₆		
100	-0.41772	-1.29912	-0.41699	-1.02540		
150	-0.49917	-1.17591	-0.50345	-1.16565		
200	-0.61116	-0.89808	-0.62243	-1.25351		
250	-0.80201	-0.68686	-0.79061	-1.30817		
300	-0.75937	-0.62798	-0.75859	-1.35751		

Table S2. Integrated COHP (ICOHP) up to the Fermi level for H...H in ScCaH8.

Structure	Pressure (GPa)	λ	$\omega_{log}(\mathbf{K})$	$T_{\rm c}({ m K})~(\mu^*=0.1)$
<i>Cmcm</i> -CaH ₄	200	0.46	1398.0	11.6 ^a
14/mmm-ScH4	250	0.81	1891.8	78.0 ^b
P4/mmm-ScCaH ₈	200	1.89	1252.4	212.1°
Im3m-CaH ₆	200	1.98	1237.7	211.3 ^d
$Im\overline{3}m$ -ScH ₆	350	1.25	1433.4	169.0 ^b
$Pm\overline{3}m$ -ScCaH ₁₂	200	1.70	1201.1	182.1°

Table S3. The calculated EPC parameter λ , logarithmic average phonon frequency ω_{log} (K), and superconducting transition temperatures T_c at high pressures.

^a Inorg. Chem. 2019, 58, 2558

^b J. Phys. Chem. C 2018, 122, 6298

^c This work

^d J. Phys.: Condens. Matter 2019, 31, 245404