Electronic Supplementary Information (ESI)

Modulating carrier transport of Pt-Ag heteronuclear complexes to attain

highly efficient OLEDs with narrow-band emission

Zhao-Yi Wang,^{acde} Lin-Xi Shi,^{ab} Liang-Jin Xu,*^a Li-Yi Zhang,^a Jin-Yun Wang,^a and

Zhong-Ning Chen*ab

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

^b Fujian Science & Technology Innovation Laboratory for Optoelectron Information of China, Fuzhou, Fujian 350108, China.

^c ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China.

^d Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Pudong, Shanghai 201210, China.

^e University of Chinese Academy of Sciences, Beijing 100039, China.

E-mail: xuliangjin@fjirsm.ac.cn; czn@fjirsm.ac.cn

	$1 \cdot 4 CH_2 Cl_2$	$2 \cdot 4 C H_2 C l_2$	$3 \cdot 4 CH_2 Cl_2$	$4 \cdot 3 \text{CHCl}_3 \cdot$	$5 \cdot 6 CH_2 Cl_2$
Empirical	$C_{96}H_{100}Ag_2$	$C_{120}H_{114}Ag_2Cl_8$	$C_{104}H_{96}O_{12}P_{6}$	$C_{107}H_{97}Ag_2$	$C_{126}H_{114}N_6P_6C_{112}$
Formula	$C_{110}O_{12}P_6Pt$	$F_6N_2O_6P_6PtS_2$	$C_{110}Ag_2PtS_2$	$Cl_{11}N_4O_{11}P_6$	$Ag_2PtO_6S_2F_6$
Formula Weight	2396.90	2738.50	2553.07	2599.46	3008.40
Crystal System	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic
Space Group	P-1	P-1	P-1	P-1	P-1
a (Å)	12.9220(9)	14.3798(12)	14.2447(10)	15.2948(17)	14.2767(10)
b (Å)	15.4161(10)	15.1217(13)	14.3052(11)	18.341(2)	14.9810(11)
c (Å)	15.5171(11)	15.9141(15)	14.6279(11)	22.261(3)	15.3107(10)
α (deg)	114.362(2)	111.210(3)	107.774(3)	72.206(4)	86.910(3)
β (deg)	92.751(3)	95.400(3)	109.179(2)	73.763(4)	84.744(2)
γ (deg)	113.221(2)	110.171(3)	91.196(2)	72.834(4)	74.999(3)
V (Å ³)	2504.5(3)	2932.0(5)	2656.5(3)	5556.7(11)	3148.2(4)
Z	1	1	1	2	1
$ ho_{ m calcd} ({ m g \ cm^{-3}})$	1.589	1.551	1.596	1.554	1.587
μ (mm ⁻¹)	2.201	1.885	2.118	2.014	1.846
Radiation (λ , Å)	0.71073	0.71073	0.71073	0.71073	0.71073
Temperature (K)	100.0	100.0	179.68	149.99	100.04
GOF	1.051	1.071	1.081	1.051	1.035
R1 (F _o) ^{a)}	0.0527	0.0282	0.0360	0.0582	0.0293
$wR2 (F_o^2)^{b}$	0.1366	0.0705	0.0952	0.1453	0.0705

Table S1. Crystallographic Data of the PtAg₂ Complexes 1-5.

^{a)} $R1 = \Sigma |F_o - F_c| / \Sigma F_o$, ^{b)} $wR2 = \Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o)^2)]^{1/2}$

Table S2. The Optimization Procedures of the Devices Based on $PtAg_2$ Complex 4 by Modifying Doping Percentage and Host Materials.^{a)}

Doping Percentage	Host Materials (ratio)	Lmax (cd m ⁻²)	Von (V)	CEmax (cd A ⁻¹)	PEmax (lm W ⁻¹)	EQEmax (%)
6%	TCTA : OXD-7 (1 : 1)	4182	3.2	35.2	32.4	9.2
6%	TAPC : OXD-7 (1 : 1)	1939	2.8	25.5	27.2	6.7
6%	mCP : OXD-7 (1 : 1)	11912	4.1	69.5	50.5	18.2
3%	mCP : OXD-7 (1 : 1)	10515	4.2	53.1	30.3	13.9
9%	mCP : OXD-7 (1 : 1)	11360	4.4	57.8	34.5	15.1
6%	mCP : OXD-7 (2 : 1)	9834	4.0	64.3	41.2	16.8
6%	mCP : OXD-7 (1 : 2)	9318	4.7	51.5	28.4	13.5

^{a)} Device structure: ITO / PEDOT : PSS (40 nm) / Poly-TPD (50 nm) / host materials : PtAg₂ (50 nm) / BmPyPb (50 nm) / LiF (1 nm) / Al (100 nm).

Table S3. The Partial Molecular Orbital Compositions (%) by SCPA Approach in the Ground State and the Absorption Transition for Complex 1 in the CH_2Cl_2 Solution Calculated by TD-DFT Method at the PBE1PBE Level.

Orbital	Energy		MO Contribu	ution (%)	
	(eV)	Pt (s/p/d)	Ag $(s/p/d)$	PPP	CCR
L+11	-0.95	3.53 (0/100/0)	10.98 (23/69/8)	72.01	13.47
LUMO	-2.42	16.98 (0/100/0)	20.52 (75/16/9)	51.75	10.75
HOMO	-5.89	16.36 (1/0/99)	1.13 (39/28/33)	3.12	79.39
H-2	-6.68	27.57 (35/0/65)	35.42 (36/12/51)	36.43	0.57

States	E, nm (eV)	O.S.	Transition (Contrib.)	Assignment	Exp. (nm)
S 1	448 (2.77)	0.4388	HOMO→LUMO (98%)	¹ LLCT/ ¹ LMCT/ ¹ MC	437
S 3	362 (3.43)	0.5945	H-2→LUMO (98%)	¹ MC/ ¹ IL/ ¹ MLCT	
S25	283 (4.38)	0.2004	HOMO→L+11 (80%)	¹ LLCT/ ¹ MC/ ¹ IL	

Table S4. The Partial Molecular Orbital Compositions (%) by SCPA Approach in the Lowest-Energy Triplet State and the Emission Transition for Complex 1 in the CH_2Cl_2 Solution Calculated by TD-DFT Method at the PBE1PBE Level.

Orbital	Energy		MO Contril	bution (%)	
	(eV)	Pt (s/p/d)	Ag (s/p/d)	PPP	CCR
LUMO	-2.62	21.10 (0/100/0)	21.73 (80/10/10)	46.32	10.86
HOMO	-5.70	16.84 (1/0/99)	1.01 (42/35/23)	2.78	79.37
H-1	-6.22	1.41 (0/100/0)	8.42 (46/10/44)	11.83	78.35
H-2	-6.75	27.00 (43/0/57)	35.64 (36/13/50)	36.75	0.61

States	E, nm (eV)	O.S.	Transition (Contrib.)	Assignment	Exp. (nm)
T1	618 (2.00)	0.0000	HOMO→LUMO (90%)	³ LLCT/ ³ LMCT/ ³ MC/ ³ IL	563
T2	488 (2.54)	0.0000	H-1→LUMO (72%)	³ LLCT/ ³ LMCT/ ³ IL	
T3	416 (2.98)	0.0000	H-2→LUMO (94%)	³ MC/ ³ IL/ ³ MLCT	

Table S5. The Partial Molecular Orbital Compositions (%) by SCPA Approach in the Ground State and the Absorption Transition for Complex **2** in the CH_2Cl_2 Solution Calculated by TD-DFT Method at the PBE1PBE Level.

Orbital	Energy		MO Contrib	ution (%)	
	(eV)	Pt $(s/p/d)$	Ag (s/p/d)	PPP	CCR
L+24	-0.55	21.93 (98/0/2)	15.55 (89/8/3)	27.93	34.60
L+23	-0.57	3.15 (0/100/0)	16.40 (87/11/3)	17.67	62.78
L+22	-0.57	26.93 (95/0/5)	29.42 (90/8/2)	19.72	23.93
L+8	-1.16	13.17 (0/100/0)	9.34 (86/10/4)	23.34	54.15
L+2	-1.50	15.55 (0/100/0)	11.39 (66/16/18)	69.52	3.53
L+1	-1.51	15.72 (25/0/75)	4.96 (40/42/18)	77.85	1.48
LUMO	-2.34	17.51 (0/100/0)	9.37 (28/49/23)	62.19	10.94
HOMO	-5.53	5.22 (20/0/80)	1.15 (59/27/13)	1.32	92.31
H-1	-5.63	0.11 (0/100/0)	0.65 (23/19/58)	3.75	95.50
H-4	-7.03	38.14 (12/0/88)	10.55 (13/17/69)	10.37	40.94
States E	E. nm (eV)	O.S. Transitic	on (Contrib.)	Assignment	Exp. (nm)

States	E, nm (eV)	O.S.	Transition (Contrib.)	Assignment	Exp. (nm)
S 1	482 (2.57)	0.0853	HOMO→LUMO (96%)	¹ LLCT/ ¹ LMCT/ ¹ IL	468
S 4	353 (3.51)	0.5106	HOMO→L+2 (81%)	¹ LLCT/ ¹ LMCT	
S 9	338 (3.67)	1.0933	H-1→L+1 (31%)	¹ LLCT/ ¹ LMCT	
			HOMO→L+8 (27%)	¹ IL/ ¹ LLCT/ ¹ LMCT	
			H-4→LUMO (13%)	¹ LLCT/ ¹ MC/ ¹ MLCT/ ¹ IL	
S33	300 (4.14)	0.2968	HOMO→L+23 (42%)	¹ IL/ ¹ LLCT/ ¹ LMCT	
			H-1→L+22 (21%)	¹ LMCT/ ¹ IL/ ¹ LLCT	
			H-1→L+24 (14%)	¹ LMCT/ ¹ IL/ ¹ LLCT	

Table S6. The Partial Molecular Orbital Compositions (%) by SCPA Approach in the Lowest-Energy Triplet State and the Emission Transition for Complex **2** in the CH₂Cl₂ Solution Calculated by TD-DFT Method at the PBE1PBE Level.

Orbital	l Energy			MO Contri	bution (%)	
	(eV)	Pt (s/p	o/d)	Ag (s/p/d)	PPP	CCR
L+11	-1.07	11.40 (46	5/0/54)	10.52 (55/30/14)	22.93	55.14
L+8	-1.26	4.70 (0/1	100/0)	2.08 (42/51/7)	29.40	63.82
LUMC	-2.75	21.46 (0/	100/0)	24.98 (80/8/12)	47.13	6.43
HOMC	-5.45	4.84 (23)	/0/77)	1.54 (67/20/13)	1.91	91.70
H-1	-5.56	0.71 (0/1	100/0)	1.57 (83/8/9)	3.57	94.16
States	E, nm (eV)	O.S.	Trar	sition (Contrib.)	Assignment	Exp. (nm)
T1	605 (2.05)	0.0000	HOM	O→LUMO (92%)	³ LLCT/ ³ LMCT	636
T2	558 (2.22)	0.0000	H-1-	→LUMO (91%)	³ LLCT/ ³ LMCT	
Т3	485 (2.56)	0.0000	HON H-1	MO→L+8 (42%) I→L+11 (25%)	³ IL/ ³ LLCT ³ IL/ ³ LLCT/ ³ LMCT	ſ

Table S7. The Partial Molecular Orbital Compositions (%) by SCPA Approach in the Ground State and the Absorption Transition for Complex **3** in the CH_2Cl_2 Solution Calculated by TD-DFT Method at the PBE1PBE Level.

Orbital	Energy		MO Contribu	tion (%)	
	(eV)	Pt (s/p/d)	Ag (s/p/d)	PPP	CCR
L+5	-1.61	6.87 (0/100/0)	11.38 (28/62/11)	45.24	36.51
L+2	-2.03	7.66 (0/100/0)	7.41 (55/37/8)	36.52	48.41
L+1	-2.26	19.35 (86/0/14)	16.97 (83/15/2)	4.53	59.15
LUMO	-2.79	13.44 (0/100/0)	13.02 (65/20/15)	39.06	34.48
HOMO	-6.49	20.49 (20/0/80)	7.00 (57/10/34)	6.83	65.69
H-1	-6.84	1.63 (0/100/0)	17.03 (42/8/50)	20.51	60.84
H-2	-6.89	28.14 (36/0/64)	34.64 (39/12/49)	35.38	1.85

States	E, nm (eV)	O.S.	Transition (Contrib.)	Assignment	Exp. (nm)
S 1	416 (2.98)	1.0329	HOMO→LUMO (95%)	¹ IL/ ¹ LLCT/ ¹ MC	410
S 2	371 (3.35)	0.5130	H-2→LUMO (94%)	¹ IL/ ¹ MLCT/ ¹ MC	370
S 6	328 (3.78)	0.3746	HOMO→L+2 (77%)	¹ IL/ ¹ LLCT/ ¹ MLCT/ ¹ MC	319
			H-1→L+1 (17%)	¹ IL/ ¹ LMCT/ ¹ MC	
S14	299 (4.15)	0.4101	HOMO→L+5 (62%)	¹ IL/ ¹ LLCT/ ¹ MC/ ¹ MLCT	

Table S8. The Partial Molecular Orbital Compositions (%) by SCPA Approach in the Lowest-Energy Triplet State and the Emission Transition for Complex **3** in the CH_2Cl_2 Solution Calculated by TD-DFT Method at the PBE1PBE Level.

Orbita	l Energy			MO Contri	bution (%)	
	(eV)	Pt (s/	p/d)	Ag $(s/p/d)$	PPP	CCR
L+2	-2.07	9.28 (9	/89/2)	7.78 (56/37/7)	36.39	46.55
L+1	-2.37	17.75 (7	7/9/15)	15.39 (80/17/3)	10.08	56.78
LUMO	O -3.00	14.06 (4	1/95/1)	12.89 (68/16/16)	32.99	40.06
HOM	O -6.27	18.54 (2	3/1/76)	5.94 (57/12/31)	5.16	70.36
H-1	-6.76	3.92 (12	/38/50)	15.01 (42/8/49)	18.22	62.85
States	E, nm (eV)	O.S.	Trans	ition (Contrib.)	Assignment	Exp. (nm)
States T1	E, nm (eV) 598 (2.07)	O.S. 0.0000	Trans HOMC	ition (Contrib.) →LUMO (70%)	Assignment ³ IL/ ³ LLCT/ ³ MC	Exp. (nm) 534
States T1	E, nm (eV) 598 (2.07)	O.S. 0.0000	Trans HOMC HOM	ition (Contrib.) \rightarrow LUMO (70%) $O\rightarrow$ L+1 (13%)	Assignment ³ IL/ ³ LLCT/ ³ MC ³ IL/ ³ MC/ ³ LMCT	Exp. (nm) 534
States T1 T2	E, nm (eV) 598 (2.07) 533 (2.33)	O.S. 0.0000 0.0000	Trans HOMC HOM H-1-	ition (Contrib.) →LUMO (70%) O→L+1 (13%) →LUMO (31%)	Assignment ³ IL/ ³ LLCT/ ³ MC ³ IL/ ³ MC/ ³ LMCT ³ IL/ ³ MC/ ³ LLCT	Exp. (nm) 534
States T1 T2	E, nm (eV) 598 (2.07) 533 (2.33)	O.S. 0.0000 0.0000	Trans HOMC HOM H-1– HOM	ition (Contrib.) →LUMO (70%) O→L+1 (13%) →LUMO (31%) O→L+1 (22%)	Assignment ³ IL/ ³ LLCT/ ³ MC ³ IL/ ³ MC/ ³ LMCT ³ IL/ ³ MC/ ³ LLCT ³ IL/ ³ MC/ ³ LMCT	Exp. (nm) 534
States T1 T2	E, nm (eV) 598 (2.07) 533 (2.33)	O.S. 0.0000 0.0000	Trans HOMC HOM H-1– HOM H-1	ition (Contrib.) \rightarrow LUMO (70%) $O\rightarrow$ L+1 (13%) \rightarrow LUMO (31%) $O\rightarrow$ L+1 (22%) \rightarrow L+1 (14%)	Assignment ³ IL/ ³ LLCT/ ³ MC ³ IL/ ³ MC/ ³ LMCT ³ IL/ ³ MC/ ³ LLCT ³ IL/ ³ MC/ ³ LMCT ³ IL/ ³ MC/ ³ LMCT	Exp. (nm) 534
States T1 T2 T3	E, nm (eV) 598 (2.07) 533 (2.33) 435 (2.85)	O.S. 0.0000 0.0000 0.0000	Trans HOMC HOM H-1– HOM H-1 HOM	ition (Contrib.) \rightarrow LUMO (70%) $O \rightarrow L+1 (13\%)$ \rightarrow LUMO (31%) $O \rightarrow L+1 (22\%)$ $\rightarrow L+1 (14\%)$ $O \rightarrow L+2 (26\%)$	Assignment ³ IL/ ³ LLCT/ ³ MC ³ IL/ ³ MC/ ³ LMCT ³ IL/ ³ MC/ ³ LMCT ³ IL/ ³ MC/ ³ LMCT ³ IL/ ³ LLCT/ ³ MC	Exp. (nm) 534
States T1 T2 T3	E, nm (eV) 598 (2.07) 533 (2.33) 435 (2.85)	O.S. 0.0000 0.0000 0.0000	Trans HOMC HOM H-1– HOM H-1 HOM H-1	ition (Contrib.) \rightarrow LUMO (70%) $O \rightarrow L+1 (13\%)$ \rightarrow LUMO (31%) $O \rightarrow L+1 (22\%)$ $\rightarrow L+1 (14\%)$ $O \rightarrow L+2 (26\%)$ $\rightarrow L+1 (14\%)$	Assignment ³ IL/ ³ LLCT/ ³ MC ³ IL/ ³ MC/ ³ LMCT ³ IL/ ³ MC/ ³ LLCT ³ IL/ ³ MC/ ³ LMCT ³ IL/ ³ LLCT/ ³ MC ³ IL/ ³ LLCT/ ³ MC	Exp. (nm) 534
States T1 T2 T3	E, nm (eV) 598 (2.07) 533 (2.33) 435 (2.85)	O.S. 0.0000 0.0000 0.0000	Trans HOMC HOM H-1- HOM H-1 HOM H-1 HOMC	ition (Contrib.) \rightarrow LUMO (70%) $O\rightarrow$ L+1 (13%) \rightarrow LUMO (31%) $O\rightarrow$ L+1 (22%) \rightarrow L+1 (14%) $O\rightarrow$ L+2 (26%) \rightarrow L+1 (14%) \rightarrow LUMO (13%)	Assignment ³ IL/ ³ LLCT/ ³ MC ³ IL/ ³ MC/ ³ LMCT ³ IL/ ³ MC/ ³ LMCT ³ IL/ ³ MC/ ³ LMCT ³ IL/ ³ LLCT/ ³ MC ³ IL/ ³ LLCT/ ³ MC ³ IL/ ³ LLCT/ ³ MC	Exp. (nm) 534

Table S9. The Partial Molecular Orbital Compositions (%) by SCPA Approach in the Ground State and the Absorption Transition for Complex **4** in the CH₂Cl₂ Solution Calculated by TD-DFT Method at the PBE1PBE Level.

Orbital	Energy			MO Contributi	MO Contribution (%)		
	(eV)	Pt (s/	(p/d)	Ag $(s/p/d)$	PPP	CCR	
L+2	-1.9	6.72 (0/	(100/0)	5.76 (38/55/7)	42.05	45.47	
L+1	-2.13	32.60 (9	95/0/5)	22.48 (80/19/2)	3.60	41.32	
LUMO	-2.77	13.00 (0	/100/0)	11.60 (58/25/17)	43.29	32.11	
HOMO	-6.37	15.58 (1	2/0/88)	4.71 (44/12/44)	4.99	74.73	
H-1	-6.65	0.70 (0/	(100/0)	10.21 (35/9/56)	12.63	76.46	
H-2	-6.87	25.53 (3	5/0/65)	35.36 (40/11/49)	36.84	2.28	
States	E, nm (eV)	O.S.	Tran	sition (Contrib.)	Assignment	Exp. (nm)	
S 1	424 (2.92)	1.3958	HOM	O→LUMO (94%)	¹ LLCT/ ¹ IL/ ¹ MC	411	
S 3	370 (3.35)	0.5623	H-2-	→LUMO (94%)	¹ IL/ ¹ MLCT/ ¹ MC	370	
S 6	325 (3.82)	1.6354 HOMO \rightarrow L+2 (66%)		¹ IL/ ¹ LLCT/ ¹ MC	317		
			H-	1→L+1 (25%)	¹ LMCT/ ¹ IL/ ¹ MC		

Table S10. The Partial Molecular Orbital Compositions (%) by SCPA Approach in the Lowest-Energy Triplet State and the Emission Transition for Complex **4** in the CH₂Cl₂ Solution Calculated by TD-DFT Method at the PBE1PBE Level.

Orbital	Energy	MO Contribution (%)				
	(eV)	Pt (s/p/d)	Ag $(s/p/d)$	PPP	CCR	
L+2	-1.97	10.05 (31/67/2)	7.52 (50/43/7)	37.91	44.52	
L+1	-2.28	29.38 (90/4/6)	20.28 (78/19/2)	8.46	41.88	
LUMO	-2.96	14.37 (6/93/1)	12.08 (64/19/17)	37.24	36.31	
HOMO	-6.13	12.22 (14/1/85)	3.61 (44/13/43)	3.99	80.17	
H-1	-6.58	3.35 (7/17/75)	8.21 (35/9/55)	10.53	77.91	
H-3	-7.21	18.83 (35/3/62)	8.62 (43/16/42)	14.85	57.71	

States	E, nm (eV)	O.S.	Transition (Contrib.)	Assignment	Exp. (nm)
T1	601 (2.06)	0.0000	HOMO→LUMO (68%)	³ IL/ ³ LLCT/ ³ MC/ ³ LMCT	522
			HOMO→L+1 (18%)	³ IL/ ³ LMCT/ ³ MC	
T2	537 (2.31)	0.0000	H-1→LUMO (38%)	³ IL/ ³ LLCT/ ³ LMCT/ ³ MC	
			HOMO→L+1 (18%)	³ IL/ ³ LMCT/ ³ MC	
			H-1→L+1 (13%)	³ IL/ ³ LMCT/ ³ MC	
			H-1→L+2 (10%)	³ IL/ ³ LLCT/ ³ MC	
T3	459 (2.70)	0.0000	H-3→LUMO (15%)	³ IL/ ³ MC/ ³ LLCT	
			HOMO→L+2 (14%)	³ IL/ ³ LLCT/ ³ MC	
			H-1→L+1 (13%)	³ IL/ ³ LMCT/ ³ MC	
			HOMO→L+1 (10%)	³ IL/ ³ LMCT/ ³ MC	

Orbital	Energy		MO Contributi	lon (%)	
	(eV)	Pt (s/p/d)	Ag (s/p/d)	PPP	CCR
L+4	-2.03	8.03 (0/100/0)	5.22 (28/60/12)	43.37	43.38
L+3	-2.19	0.32 (9/88/3)	0.45 (87/9/4)	0.14	99.08
L+2	-2.19	0.29 (65/15/20)	0.32 (80/7/13)	0.20	99.19
L+1	-2.29	28.31 (94/0/6)	19.13 (80/19/2)	2.53	50.03
LUMO	-2.78	12.14 (0/100/0)	11.03 (60/23/16)	39.00	37.83
HOMO	-6.47	21.13 (16/0/84)	7.70 (47/10/43)	8.32	62.84
H-1	-6.84	1.76 (0/100/0)	21.58 (38/7/55)	26.30	50.35
H-2	-6.86	28.54 (34/0/66)	34.34 (38/12/50)	34.88	2.24
H-4	-7.38	0.12 (0/100/0)	0.09 (40/41/18)	2.04	97.75
H-5	-7.38	0.06 (43/0/56)	0.21 (75/15/10)	0.73	99.00
H-8	-7.44	0.35 (0/100/0)	2.15 (62/2/36)	4.02	93.49
H-9	-7.44	0.81 (22/0/78)	0.48 (15/53/32)	4.74	93.96
H-17	-7.61	0.97 (86/0/14)	0.82 (72/25/4)	1.30	96.92
H-25	-7.83	5.51 (48/0/52)	2.30 (24/7/69)	89.97	2.22

Table S11. The Partial Molecular Orbital Compositions (%) by SCPA Approach in the Ground State and the Absorption Transition for Complex **5** in the CH_2Cl_2 Solution Calculated by TD-DFT Method at the PBE1PBE Level.

States	E, nm (eV)	O.S.	Transition (Contrib.)	Assignment	Exp. (nm)
S 1	417 (2.97)	1.2582	HOMO→LUMO (95%)	¹ IL/ ¹ LLCT/ ¹ MC	412
S 2	371 (3.34)	0.5637	H-2→LUMO (93%)	¹ MLCT/ ¹ IL/ ¹ MC	371
S 8	325 (3.82)	0.9648	HOMO→L+4 (80%)	¹ IL/ ¹ LLCT/ ¹ MLCT/ ¹ MC	330
			H-1→L+1 (13%)	¹ IL/ ¹ LMCT/ ¹ MC	
S55	278 (4.46)	0.5505	H-25→LUMO (20%)	¹ IL/ ¹ LLCT/ ¹ LMCT	
			H-8→L+2 (20%)	$^{1}\mathrm{IL}$	
			H-9→L+3 (19%)	$^{1}\mathrm{IL}$	
S65	271 (4.57)	0.5916	H-4→L+1 (32%)	¹ IL/ ¹ LMCT	269
			H-17→L+3 (14%)	$^{1}\mathrm{IL}$	
			H-5→LUMO (13%)	¹ LLCT/ ¹ IL/ ¹ LMCT	
			H-5→L+4 (11%)	¹ IL/ ¹ LLCT	

Table S12. The Partial Molecular Orbital Compositions (%) by SCPA Approach in the Lowest-Energy Triplet State and the Emission Transition for Complex **5** in the CH₂Cl₂ Solution Calculated by TD-DFT Method at the PBE1PBE Level.

Orbital	Energy	MO Contribution (%)				
	(eV)	Pt (s/p/d)	Ag $(s/p/d)$	PPP	CCR	
L+1	-2.29	26.62 (93/0/7)	17.74 (80/19/1)	2.48	53.15	
LUMO	-2.95	16.30 (0/100/0)	15.01 (71/13/15)	39.34	29.35	
HOM	-6.31	24.80 (23/0/77)	4.60 (63/9/28)	3.66	66.94	
0						
H-1	-6.8	2.54 (0/100/0)	17.01 (38/7/55)	21.83	58.62	
H-2	-6.9	26.31 (40/0/60)	35.76 (39/12/49)	37.05	0.88	

States	<i>E</i> , nm (eV)	O.S.	Transition (Contrib.)	Assignment	Exp. (nm)
T1	584 (2.12)	0.0000	HOMO→LUMO (81%)	³ LLCT/ ³ IL/ ³ MC	517
T2	523 (2.37)	0.0000	H-1→LUMO (44%)	³ IL/ ³ LLCT/ ³ MC/ ³ LMCT	
			HOMO→L+1 (32%)	³ IL/ ³ MC/ ³ LMCT	
T3	428 (2.90)	0.0000	H-2→LUMO (85%)	³ IL/ ³ MC/ ³ MLCT	

Fig. S1 The ¹H NMR spectrum of complex 1 in CDCl₃ solution at ambient temperature.

Fig. S2 The ³¹P NMR spectrum of complex 1 in CDCl₃ solution at ambient temperature.

Fig. S3 The ¹H NMR spectrum of complex 2 in CD₂Cl₂ solution at ambient temperature.

Fig. S4 The ³¹P NMR spectrum of complex 2 in CD₂Cl₂ solution at ambient temperature.

Fig. S5 The ¹H NMR spectrum of complex 3 in CD₂Cl₂ solution at ambient temperature.

Fig. S6 The ³¹P NMR spectrum of complex 3 in CD₂Cl₂ solution at ambient temperature.

Fig. S7 The ¹H NMR spectrum of complex 4 in CD₂Cl₂ solution at ambient temperature.

Fig. S8 The ³¹P NMR spectrum of complex 4 in CD₂Cl₂ solution at ambient temperature.

Fig. S9 The ¹H NMR spectrum of complex 5 in CD₂Cl₂ solution at ambient temperature.

Fig. S10 The 31 P NMR spectrum of complex 5 in CD₂Cl₂ solution at ambient temperature.

Fig. S11 The high-resolution mass spectrometry of $PtAg_2$ complex 1. Inset: The measured and simulated isotopic patterns.

Fig. S12 The high-resolution mass spectrometry of $PtAg_2$ complex 2. Inset: The measured and simulated isotopic patterns.

Fig. S13 The high-resolution mass spectrometry of $PtAg_2$ complex 3. Inset: The measured and simulated isotopic patterns.

Fig. S14 The high-resolution mass spectrometry of $PtAg_2$ complex 4. Inset: The measured and simulated isotopic patterns.

Fig. S15 The high-resolution mass spectrometry of $PtAg_2$ complex 5. Inset: The measured and simulated isotopic patterns.

Fig. S16 Thermogravimetric analysis for complexes 1-5.

Fig. S17 Plots of energy level of frontier orbitals in the ground states for complexes 1-5, respectively, in the CH₂Cl₂ solution by TD-DFT method at the PBE1PBE level.

Fig. S18 Plots of energy level of frontier orbitals in the lowest-energy triplet states for complexes 1-5, respectively, in the CH₂Cl₂ solution by TD-DFT method at the PBE1PBE level.

Fig. S19 (a) Current density-voltage-luminance characteristics. (b) Current efficiency/external quantum efficiency *vs* luminance for OLED based on complex **1**.

Fig. S20 (a) Current density-voltage-luminance characteristics. (b) Current efficiency/external quantum efficiency *vs* luminance for OLED based on complex **2**.

Fig. S21 (a) Current density-voltage-luminance characteristics. (b) Current efficiency/external quantum efficiency *vs* luminance for OLED based on complex **3**.

Fig. S22 (a) Current density-voltage-luminance characteristics. (b) Current efficiency/external quantum efficiency *vs* luminance for OLED based on complex **5**.