Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

## Supplementary Information

for

# Large-Size Free-Standing Single-crystal β-Ga<sub>2</sub>O<sub>3</sub> Membranes Fabricated by Hydrogen Implantation and Lift-Off

## by

Yixiong Zheng<sup>1</sup>, Zixuan Feng<sup>2</sup>, A F M Anhar Uddin Bhuiyan<sup>2</sup>, Lingyu Meng<sup>2</sup>, Samyak Dhole<sup>1</sup>, Quanxi Jia<sup>1</sup>, Hongping Zhao<sup>2,3</sup>, Jung-Hun Seo<sup>1, a)</sup>

1Department of Materials Design and Innovation, University at Buffalo, The State University of New York, Buffalo, NY USA 14260 2Depertment of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio

43210, USA

3Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, USA

### (1) Bulk β-Ga<sub>2</sub>O<sub>3</sub> substrates:

Both [100] and [001]-oriented  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> homoepitaxy layers were grown on Fe-doped [100] and [001] substrates, respectively. The SEM images shown in Figure S1(a) and (b) present the surface images taken from [100] and [001]-oriented  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> substrate. Figure S1(c) indicates the thickness of the homoepitaxy layer from the angled SEM image. The thickness was measured to be 204.2 nm.



**Figure S1**. SEM image of the surface of (a) [100]-oriented  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> and (b) [001] oriented  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> sample. (c) an angled SEM image shwoing the thickness of homoepitaxy layer is measured to be 204.2 nm on top of 500 mm thick Fe-doped  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> substrate.

(2) A comparision of FWHM of XRD peaks from bulk and NM forms of [100] and [001]-oriented  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>:



**Figure S2**. Measured XRD spectrum from (a) [100]-oriented  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> substrate and (b) [001]-oriented  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> substrate after the lift-off process, (c) [100]-oriented  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> NM and (d) [001]-oriented  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> NM after the lift-off process.

#### (3) XRD spectra from Bulk [100] and [001]-oriented β-Ga<sub>2</sub>O<sub>3</sub> samples:



**Figure S3**. Measured XRD spectrum from (a) [100]-oriented  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> substrate and (b) [001]-oriented  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> substrate.

(4) Raman spectra taken from  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> NM on polyimide substrate under different bending conditions (uniaxial tensile strain).



**Figure S4**. Measured Raman spectra (Raw data before the baseline subtraction) taken from  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> NM on polyimide substrate under different uniaxial tensile strain (a) 0.09%, (b) 0.127%, (c) 0.187%, (d) 0.32%, respectively.

(5) Raman spectra taken from  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> NM on polyimide substrate under different bending conditions (uniaxial compressive strain).



**Figure S5.** Measured Raman spectra (Raw data before the baseline subtraction) taken from  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> NM on polyimide substrate under different uniaxial compressive strain (a) 0.06%, (b) 0.09%, (c) 0.187%, respectively.