Electronic Supplementary Information

2D Molecular Crystal Templated Organic p-n Heterojunctions for High-

Performance Ambipolar Organic Field-Effect Transistors

Siyu Guo,‡^a Jiarong Yao,‡^a Ying Wang,^a Lijuan Zhang,^a Fei Zhai,^b Xiali Zhang,^c Yiyu Feng,^b Wei Feng,^b Xiaotao Zhang,^a Jiansheng Jie,^c Fangxu Yang, ^{*a} Rongjin Li^{*a} and Wenping Hu^a

^{*a*} Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.

^b School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
 ^c Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for
 Carbon-Based Functional Materials & Devices Soochow University, Suzhou 215123, China.

E-mail: yangfangxu@tju.edu.cn; lirj@tju.edu.cn

Contents

- (1) **Table S1.** Unipolar thin film OFETs of F_{16} CuPc.
- (2) **Table S2.** Bilayer aOFETs adopting F_{16} CuPc as the n-type semiconductor.
- (3) **Table S3.** The threshold voltages of the OFETs.
- (4) Fig. S1 A schematic energy level diagram of the F_{16} CuPc/C6-DPA heterojunction.
- (5) Fig. S2 AFM images of BPE-PTCDI (10 nm) deposited on SiO_2 and 2DMC of C6-DPA.
- (6) Fig. S3 Device performance of OFETs based on thermally evaporated film of BPE-PTCDI.
- (7) Fig. S4 Device performance of aOFETs based on BPE-PTCDI (10 nm)/C6-DPA.
- (8) Fig. S5 POM, AFM and XRD of 2DMC of C8-BTBT.
- (9) Fig. S6 Device performance of OFETs based on 2DMC of C8-BTBT.
- (10) Fig. S7 AFM image of F_{16} CuPc (15 nm) deposited on 2DMC of C8-BTBT.
- (11) Fig. S8 Device performance of aOFETs based on $F_{16}CuPc$ (15 nm)/C8-BTBT.
- (12) Fig. S9 Magnified output characteristics of F_{16} CuPc (10 nm)/C6-DPA aOFETs.
- (13) Fig. S10 Mobility distribution of the devices of F_{16} CuPc (10 nm)/C6-DPA aOFETs.
- (14) Fig. S11 Device performance of OFETs based on thermally evaporated film of F_{16} CuPc.
- (15) Fig. S12 Device performance of OFETs based on 2DMC of C6-DPA.
- (16) Fig. S13 Hysteresis curves of C6-DPA, F_{16} CuPc and their heterojunction.
- (17) Fig. S14 AFM images of thermally evaporated films of C6-DPA and F_{16} CuPc/C6-DPA.
- (18) Fig. S15 Device performance of OFET based on thermally evaporated film of C6-DPA.
- (19) Fig. S16 Device performance of OFET based on thermally evaporated films of F_{16} CuPc/C6-DPA.

Table S1 Unipolar thin film OFETs of F_{16} CuPc.

Method	Fabrication condition	Mobility (cm ² V ⁻¹ s ⁻¹)	Ref.
Thermal evaporation	Substrate temperature = $125^{\circ}C$	0.03	1
Thermal evaporation	Substrate temperature = $120^{\circ}C$	0.011	2
Thermal evaporation	With silk fibroin as the gate dielectric	0.39	3
Thermal evaporation	With C_{60} as floating gate layer on a flexible substrate	0.0018	4
Thermal evaporation	<i>p</i> -6P film served as the inducing layer Substrate temperature = 110° C	0.27	5
Thermal evaporation	<i>p</i> -6P film served as the inducing layer Substrate temperature = 150°C	0.12-0.5	6

Table S2 Bilayer a OFETs adopting $F_{16}\mbox{CuPc}$ as the n-type semiconductor.

P type material	$\mu_{\rm h, max}$ (cm ² V ⁻¹ s ⁻¹)	Device structure	Preparation method	μ _{e, max} (cm ² V ⁻¹ s ⁻¹)	Ref.
CuPc	1×10^{-6}	CuPc(10 nm)/Au/F ₁₆ CuPc(2 nm)/SiO ₂	Thermal evaporation	1 × 10-6	7
CuPc	1.44 × 10 ⁻³	Au/CuPc(30 nm)/F ₁₆ CuPc(10 nm)/SiO ₂	Thermal evaporation	9.97 × 10 ⁻⁴	8
CuPc	7.8×10^{-4}	Au/F ₁₆ CuPc(25 nm)/CuPc(5 nm) /SiO ₂	Thermal evaporation	4.6 × 10 ⁻⁴	9
BP2T	4.0 × 10 ⁻²	Au/F ₁₆ CuPc(20 nm)/BP2T(3 nm) /SiO ₂	Thermal evaporation	3.6 × 10 ⁻²	10
CuPc	N/A	F ₁₆ CuPc(10 nm)/ Au/CuPc(20 nm)/SiO ₂	Thermal evaporation	1.12 × 10 ⁻²	11
<i>p</i> -6P	N/A	Au/F ₁₆ CuPc (20 nm)/ <i>p</i> -6P (1 nm) /SiO ₂	Thermal evaporation	1.1 × 10 ⁻¹	12
BP2T	1.2 × 10 ⁻¹	Au/F ₁₆ CuPc(20 nm)/BP2T(5 nm) /SiO ₂	Thermal evaporation	2.5 × 10 ⁻²	13
CuPc	2.96 × 10 ⁻³	Au/F ₁₆ CuPc(5 nm)/CuPc(15 nm)/SiO ₂	Thermal evaporation	9.49 × 10 ⁻³	14
PhT2	3.4 × 10 ⁻²	Au/F ₁₆ CuPc(20 nm)/PhT2(2 nm)/SiO ₂	Thermal evaporation	3.0 × 10 ⁻²	15
CuPc	2.91 × 10 ⁻²	Au/CuPc(20 nm)/F ₁₆ CuPc(5 nm)/OTS-SiO ₂	Thermal evaporation	1.04 × 10 ⁻²	16
CuPc	7×10^{-2}	Au/F ₁₆ CuPc(87 nm)/CuPc(56 nm)/OTS-SiO ₂ I	Physical vapor transport	5 × 10 ⁻²	17
CuPc	1.30 × 10 ⁻³	Au/CuPc(10 nm)/F ₁₆ CuPc(10 nm)/SiO ₂	Thermal evaporation	1.30 × 10 ⁻²	18
CuPc	3.1 × 10 ⁻³	Au/MoO ₃ /CuPc(7 nm)/F ₁₆ CuPc(27 nm)/SiO ₂	Thermal evaporation	2.5 × 10 ⁻³	19
C ₁₀ -DNTT	8.97	Au/F ₁₆ CuPc(20 nm)/C ₁₀ -DNTT/SiO ₂	F_{16} CuPc by thermal evaporation, C_{10} -DNTT by dual solution shearing	6 × 10 ⁻²	20
CuPc	2.6 × 10 ⁻²	F ₁₆ CuPc(5 nm)/CuPc(11 nm)/Pt/SiO ₂	Thermal evaporation	1.4 × 10 ⁻²	21
C6-DPA	3.97	F ₁₆ CuPc(10 nm)/Au/C6-DPA(9 nm)/SiO ₂	F ₁₆ CuPc by thermal evaporation, C6-DPA by SCS	5.6 × 10 ⁻¹	This work

Device	$V_{\rm th}({ m V})$
C6-DPA (p-type)	-13
Heterojunction (p-channel)	1
F ₁₆ CuPc (n-type)	20
Heterojunction (n-channel)	5

Table S3 The threshold voltages of the OFETs.

The threshold voltages of the OFETs were deduced from Fig. S12b, Fig. 4b, Fig. S11b, and Fig. 4c, respectively.

Fig. S1 A schematic energy level diagram of the $F_{16}CuPc$ and C6-DPA.²²⁻²³

Fig. S2 (a) The chemical structure of BPE-PTCDI. AFM images of (b) 10 nm BPE-PTCDI deposited on SiO₂, (c) 10 nm of BPE-PTCDI deposited on 2DMC of C6-DPA, respectively.

BPE-PTCDI (10 nm) deposited on SiO₂/Si exhibited small and randomly-oriented spherical grains with high density of grain boundaries (Fig. S2b). The morphology changed prominently when BPE-PTCDI (10 nm) was deposited on 2DMC of C6-DPA (Fig. S2c).

Fig. S3 (a) Schematic of an OFET of BPE-PTCDI. (b) Typical transfer and (c) output curves of BPE-PTCDI. The channel length was 110 μ m and the channel width was 131 μ m. (d) Histogram of the mobility of 20 BPE-PTCDI OFETs. The average electron mobility was 2.02 $\times 10^{-3}$ cm² V⁻¹ s⁻¹ among 20 devices, and the highest value was 3.46×10^{-3} cm² V⁻¹ s⁻¹.

Fig. S4 (a) Typical transfer and (c) output characteristics of p-channel operation mode under negative drain bias. (b) Typical transfer and (d) output characteristics of n-channel operation mode under positive drain bias. The channel length was 117 μ m and the channel width was 136 μ m. (e and f) Magnified output characteristics of p-channel operation mode of (c) at $V_{GS} = 0$ V and n-channel operation mode of (d) at $V_{GS} = 80$ V, respectively. (g and h) Mobility distribution of BPE-PTCDI (10 nm)/C6-DPA aOFETs in p-channel operation mode and n-channel operation mode, respectively.

The maximum (average) mobility for p-channel and n-channel was 2.61 (1.60) cm² V⁻¹ s⁻¹ and 5.60×10^{-2} (3.85×10^{-2}) cm² V⁻¹ s⁻¹, respectively. It was noted that the mobility of BPE-PTCDI increased over one order of magnitude compared with that of the unipolar devices (Fig. S3).

Fig. S5 (a and b) POM images, (c) AFM image and (d) XRD of a 2DMC of C8-BTBT.

Fig. S6 (a) Schematic of an OFET of C8-BTBT. (b) Typical transfer and (c) output curves of C8-BTBT. The channel length was 161 μ m and the channel width was 139 μ m. (d) Histogram of the mobility of 20 C8-BTBT OFETs. The average electron mobility was 7.07 cm² V⁻¹ s⁻¹ among 20 devices, and the highest value was 11.33 cm² V⁻¹ s⁻¹.

Fig. S7 AFM image of F_{16} CuPc (15 nm) deposited on 2DMC of C8-BTBT. F_{16} CuPc deposited on 2DMCs of C8-BTBT also exhibited micrometer-sized grains (grain size $\approx 0.3 \sim 1.6$ µm).

Fig. S8 (a) Typical transfer and (c) output characteristics of p-channel operation mode under

negative drain bias. (b) Typical transfer and (d) output characteristics of n-channel operation mode under positive drain bias. The channel length was 149 μ m and the channel width was 102 μ m. (e and f) Magnified output characteristics of p-channel operation mode and n-channel operation mode, respectively. (g and h) Mobility distribution of F₁₆CuPc (15 nm)/C8-BTBT aOFETs in p-channel operation mode and n-channel operation mode, respectively.

The maximum (average) mobility for p-channel and n-channel was 11.77 (7.35) cm² V⁻¹ s⁻¹ and 0.20 (0.13) cm² V⁻¹ s⁻¹, respectively. It was noted that the mobility of F_{16} CuPc increased about one order of magnitude compared with that of the unipolar devices (Fig. S11).

Fig. S9 (a and b) Magnified output characteristics of F_{16} CuPc (10 nm)/C6-DPA aOFET of Fig. 4 (d and e), respectively.

Fig. S10 (a and b) Mobility distribution of F_{16} CuPc (10 nm)/C6-DPA aOFETs in p-channel operation mode and n-channel operation mode, respectively.

Fig. S11 (a) Schematic of an OFET of F_{16} CuPc. (b) Typical transfer and (c) output curves of F_{16} CuPc. The channel length was 116 µm and the channel width was 93 µm. (d) Histogram of the mobility of 20 F_{16} CuPc OFETs. The average electron mobility was 1.95×10^{-2} cm² V⁻¹ s⁻¹ among 20 devices, and the highest value was 3.60×10^{-2} cm² V⁻¹ s⁻¹.

Fig. S12 (a) Schematic of an OFET of 2DMC of C6-DPA. (b) Typical transfer and (c) output curves of 2DMC of C6-DPA. The channel length was 97 μ m and the channel width was 105 μ m. (d) Histogram of the mobility of 30 C6-DPA OFETs. The average hole mobility was 1.85 cm² V⁻¹ s⁻¹ among 30 devices, and the highest value was 3.16 cm² V⁻¹ s⁻¹.

Fig. S13 Hysteresis curves of C6-DPA, F₁₆CuPc and their heterojunction.

The hysteresis curves of C6-DPA, F_{16} CuPc and their heterojunction were shown in Fig. S13. The hysteresis of the p-channel was unchanged after the formation of heterojunction (Fig. S13a, c), which indicated that the quality of the C6-DPA/SiO₂ interface was unchanged. The hysteresis of the n-channel was reduced prominently after the formation of heterojunction (Fig. S13b, d), indicating that the quality of the F₁₆CuPc/C6-DPA interface was much better than that of F₁₆CuPc/SiO₂ interface.

One main reason for hysteresis of OFETs was charge trapping at the interface of organic semiconductor/dielectric interface.²⁴⁻²⁵ The n-channel of heterojunction was in contact with the 2DMCs. Due to the high-quality of 2DMCs, $F_{16}CuPc/2DMCs$ interface had fewer electron traps than $F_{16}CuPc/SiO_2$ interface. The other reason was that water and oxygen in the air can induce electron trap centers.²⁶⁻²⁷ When $F_{16}CuPc$ was deposited on 2DMCs of C6-DPA, the grain size was large, which protected the film from the air and thus reduced charge trapping.²⁸⁻²⁹ As a result, the n-channel of heterojunction aOFETs showed smaller hysteresis than that of single-component OFETs (Fig. S13).

Fig. S14 2D and 3D AFM images of (a) polycrystalline thin film of C6-DPA prepared by thermal evaporation and (b) F_{16} CuPc thermally evaporated on polycrystalline thin film of C6-DPA, respectively.

Fig. S15 (a) Transfer and (b) output curves of an OFET based on thermally evaporated C6-DPA on SiO₂. The hole mobility was 0.33 cm² V⁻¹ s⁻¹, which was ~ 10 times smaller than that of 2DMC of C6-DPA (Fig. S12). The channel length was 155 μ m and the channel width was 167 μ m.

Fig. S16 Typical transfer characteristics of thermally evaporated $F_{16}CuPc/C6$ -DPA aOFET under (a) negative and (b) positive drain bias, respectively. The channel length was 155 µm and the channel width was 168 µm.

The transfer characteristics of the two-step vacuum-deposition processed bilayer aOFET exhibited p-channel operation mode only with hole mobility of 0.34 cm² V⁻¹ s⁻¹, and the n-channel mode was not observed. The poor performance was attributed to the poor morphology of the films and the rough interface between the C6-DPA and F_{16} CuPc (Fig. S14).

Reference

- 1. Z. Bao, A. J. Lovinger and J. Brown, J. Am. Chem. Soc., 1998, 120, 207.
- S. Nénon, D. Kanehira, N. Yoshimoto, F. Fages and C. Videlot-Ackermann, *Thin Solid Films*, 2010, 518, 5593.
- 3. C.-L. Tsai, L.-S. Tsai and J.-C. Hwang, Org. Electron., 2012, 13, 3315.
- 4. Y. Zhou, S.-T. Han, Y. Yan, L.-B. Huang, L. Zhou, J. Huang and V. A. L. Roy, *Sci. Rep.*, 2013, **3**, 3093.
- 5. X. Shao, S. Wang, X. Li, Z. Su, Y. Chen and Y. Xiao, *Dyes Pigm.*, 2016, 132, 378.
- X. Zhang, Z. Wang, X. Zhou, Z. Wang, L. Huang and L. Chi, *Adv. Electron. Mater.*, 2017, 3, 1700128.
- 7. J. Wang, H. Wang, X. Yan, H. Huang and D. Yan, Chem. Phys. Lett., 2005, 407, 87.
- 8. R. Ye, M. Baba, Y. Oishi, K. Mori and K. Suzuki, Appl. Phys. Lett., 2005, 86, 253505.
- J. Wang, H. Wang, X. Yan, H. Huang, D. Jin, J. Shi, Y. Tang and D. Yan, *Adv. Funct. Mater.*, 2006, 16, 824.
- H. Wang, J. Wang, X. Yan, J. Shi, H. Tian, Y. Geng and D. Yan, *Appl. Phys. Lett.*, 2006, 88, 133508.
- 11. H. Wang, J. Wang, H. Huang, X. Yan and D. Yan, Org. Electron., 2006, 7, 369.
- 12. H. Wang, F. Zhu, J. Yang, Y. Geng and D. Yan, Adv. Mater., 2007, 19, 2168.
- J. Shi, H. Wang, D. Song, H. Tian, Y. Geng and D. Yan, *Adv. Funct. Mater.*, 2007, 17, 397.
- 14. R. Ye, M. Baba, K. Suzuki and K. Mori, Appl. Surf. Sci., 2008, 254, 7885.
- J. Shi, H. Wang, D. Song, H. Tian, Y. Geng and D. Yan, *Thin Solid Films*, 2008, **516**, 3270.

- 16. W. Gu, X. Li, H. Zhang, B. Wei, J. Zhang and J. Wang, *Thin Solid Films*, 2010, **519**, 439.
- Y. Zhang, H. Dong, Q. Tang, S. Ferdous, F. Liu, S. C. B. Mannsfeld, W. Hu and A. L. Briseno, J. Am. Chem. Soc., 2010, 132, 11580.
- 18. S. Nénon, D. Kanehira, N. Yoshimoto, F. Fages and C. Videlot-Ackermann, *Synth. Met.*, 2011, **161**, 1915.
- 19. M. Yi, N. Zhang, L. Xie and W. Huang, J. Semicond., 2015, 36, 104001.
- 20. S. Huang, B. Peng and P. K. L. Chan, Adv. Electron. Mater., 2017, 3, 1700268.
- 21. K. Eguchi, M. M. Matsushita and K. Awaga, J. Phys. Chem. C, 2018, 122, 26054.
- 22. X. Zhu, Y. Zhang, X. Ren, J. Yao, S. Guo, L. Zhang, D. Wang, G. Wang, X. Zhang, R. Li and W. Hu, *Small*, 2019, **15**, 1902187.
- 23. Y. Gao, H. Ding, H. Wang and D. Yan, Appl. Phys. Lett., 2007, 91, 142112.
- 24. W. Huang, W. Shi, S. Han and J. Yua, AIP Adv., 2013, 3, 052122.
- B. M. Egginger, M. Irimia-Vladu, R. Schwödiauer, A. Tanda, I. Frischauf, S. Bauer and N. S. Sariciftci, *Adv. Mater.*, 2008, 20, 1018.
- 26. R. D. Pietro and H. Sirringhaus, Adv. Mater., 2012, 24, 3367.
- 27. R. D. Pietro, D. Fazzi, T. B. Kehoe and H. Sirringhaus, J. Am. Chem. Soc., 2012, **134**, 14877.
- C. Qian, J. Sun, L. Zhang, H. Xie, H. Huang, J. Yang and Y. Gao, *Synth. Met.*, 2015, 210, 336.
- 29. C. Qian, J. Sun, L. Zhang, H. Huang, J. Yang and Y. Gao, *J. Phys. Chem. C*, 2015, **119**, 14965.