Electronic Supplementary Information (ESI):

Novel low-powered upconversion strategy to enhance anti-Stokes shift: Cascading the one-photon hot-band absorption and triplet sensitization based on Pd(II)octaethylporphyrin

Xiaolei Ju,^{#, a} Lin Zhu,^{#, a} Lin Li,^a Changqing Ye,^{*, a} Zuoqin Liang,^a Shuoran Chen,^a Xiaomei Wang^{*, a, b}

^a Research Center for Green Printing Nanophotonic Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.

^b State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China

*Corresponding authors: <u>yechangqing@mail.usts.edu.cn</u>, <u>wangxiaomei@mail.usts.edu.cn</u>

[#] These authors contributed equally to this work.

with U-3500 Absorption spectra were measured Hitachi recording spectrophotometer from quartz cuvettes of 1 cm path. Excitation spectra and steadystate emission as well as time-resolved decay curve were measured on an Edinburgh FLS 920 fluorophotometer equipped with time-correlated single-photon counting (TCSPC) card. With the aid of nF 900 software, the fluorescence lifetime (τ_f) and phosphorescence lifetime (τ_p) as well as the red-to-yellow upconvsersion lifetime ($\tau_{\rm UC}$) were measured under detection of nF lamp at room temperature. The monoexponential fit for fluorescence decay and red-to-yellow upconversion decay give acceptable statistics parameters of $\chi^2 < 1.1$ (where 2 is the "reduced chi-square"), while the dualexponential fit for phosphorescence decay gives acceptable statistics parameters of $\chi^2 < 1.1$ (where 2 is the "reduced chi-square"). The solution containing annihilator/sensitizer (DPA/PdOEP) pair was prepared in DMF with degassing for about 15 min with N₂ and then excited by the diode solid state laser (532 nm, $< 2 \text{ W} \cdot \text{cm}^{-2}$). The TTA-UC spectra were recorded with PR655 Spectra Scan colorimeter.

Green-to-blue net upconversion efficiency (Φ_{TTA-UC}) was obtained relative to rhodamine 6G (Rh6G) in ethanol according to Eq (1).¹

$$\Phi uc = 2\Phi r \times \frac{F_s \times A_r \times n_s^2}{F_r \times A_s \times n_r^2}$$
(1)

Herein, the subscripts "s" and "r" stand for the sample and the reference, respectively.

 Φ_r is the fluorescence quantum yield of rhodamine 6G (Rh6G as the reference, $\Phi_r = 0.88$, 0.5 μ M in ethanol).² A_s and A_r are the absorbance of sensitizer (**PdOEP**) and Rh6G at 532 nm, respectively; F_s and F_r are the integrated emission of annihilator (**DPA**) and Rh6G under the excitation wavelength of 532 nm, respectively. While n_s and n_r are the refractive indexes of solvent used in sample and reference measurements, respectively. The equation (1) is multiplied by a factor of 2, accounting for the fact that two absorbed photons are required to produce one up converted photon.

Detailed data can be found in **Fig. S3** and **Fig. S4**. Thus, the green-to-blue upconversion efficiency (Φ_{TTA-UC}) is calculated as follows:

$$\Phi uc = 2 \times 0.88 \times \frac{0.38276 \times 0.026 \times 1.4275^2}{1.27878 \times 0.045 \times 1.361^2} = 33.48\%$$

For the one-photon absorption upconversion (OPA-UC) measurements, the **PdOEP** alone solution was prepared in DMF without degassing. Diode solid state laser with 655 nm (\pm 5 nm) CW excitation (multi-mode, < 2 W·cm⁻²) was used as the excitation source. The OPA-UC spectra were recorded with the PR655 Spectra Scan colorimeter at the back of optical filter (655 nm \pm 5 nm) and the red-to-yellow efficiency (Φ_{OPA-UC}) was calculated relative to ZnPc according to Eqn. (2).³

$$\Phi uc = \Phi r \times \frac{F_s \times I_{r(655)} \times n_s^2}{F_r \times I_{s(655)} \times n_r^2}$$
(2)

Where Φ_r is the fluorescence quantum yield of ZnPc, which is used as the reference standard (Φ_r =20%, 0.5 µM in DMSO).⁴ F_s and F_r are the integrated emission of sample (**PdOEP**) and ZnPc under the excitation wavelength at 655 nm, respectively. I_{s (655)} and I_{r (655)} are the excitation intensity of sample (**PdOEP**) and ZnPc at the wavelength of 655 nm, respectively. Here, the excitation intensity (I_{ex}) was exploited rather than the absorbance (A) normally used. The reason is that the absorbance (A) of **PdOEP** at 655 nm cannot be obtained, however, the excitation intensity (I_{ex}) of PdOEP at 655 nm can be recorded (**Fig. S5**). n_s and n_r are the refractive indexes of the sample and reference solutions, respectively. Detailed data can be found in **Fig. S5** and **Fig. S6**. Thus, the red-to-yellow upconversion efficiency (Φ_{OPA-} UC) is calculated as follows:

$$\Phi uc = 0.2 \times \frac{0.00062 \times 928828 \times 1.4275^2}{0.407 \times 69607 \times 1.479^2} = 0.38\%$$

~

To obtain red-to-blue upconversion, the solution containing annihilator/sensitizer (**DPA/PdOEP**) pair was prepared in DMF with degassing for about 15 min with N₂. Diode solid state laser with 655 nm (\pm 5 nm) CW excitation (multi-mode, < 2 W·cm⁻²) was used as the excitation source. The OPA-TTA-UC spectra were recorded with the PR655 Spectra Scan colorimeter at the back of optical filter (655 nm \pm 5 nm) and the red-to-blue efficiency ($\Phi_{OPA-TTA-UC}$) was calculated relative to ZnPc also according to Eqn. (3).

$$\Phi uc = 2\Phi r \times \frac{F_s \times I_{r(655)} \times n_s^2}{F_r \times I_{s(655)} \times n_r^2} \qquad (3)$$

Where Φ_r is the fluorescence quantum yield of ZnPc ($\Phi_r = 20\%$). F_s and F_r are the integrated emission of sample (**DPA**) and reference ZnPc under the excitation wavelength at 655 nm, respectively. Then, the other parameters such as I_{s (655)}, I_{r (655)}, n_s and n_r are the same as the calculation of the red-to-yellow efficiency. The equation (3) is multiplied by a factor of 2, accounting for the fact that two absorbed photons are required to produce one up converted photon.

Detailed data can be found in **Fig. S5** and **Fig. S7**. Thus, the red-to-blue upconversion efficiency ($\Phi_{OPA-TTA-UC}$) is calculated as follows:

$$\Phi uc = 2 \times 0.2 \times \frac{0.00202 \times 928828 \times 1.4275^2}{0.407 \times 69607 \times 1.479^2} = 2.46\%$$

Fig. S1 Time-resolved fluorescence decay curve (λ_{em} =598 nm) of PdOEP (100 μ M, DMF) under the excitation of 544 nm Xe lamp in air, in which the red d line is the fitting result of the corresponding lifetime.

Fig. S2 Under excitation at 655 laser (< $2 \text{ mW} \cdot \text{cm}^{-2}$), the emission curve (i) of **DPA** alone in DMF and the emission curve (ii) of **PdOEP** alone in DMF as well as the emission curve (iii) of **DPA/PdOEP** in degassing DMF.

Fig. S3 Absorption spectra of PdOEP (a) (10 µM, DMF) and reference Rh6G (b) (ethanol).

Fig. S4 Green-to-blue upconversion of **DPA/PdOEP** (1 mM/10 μ M) in degassing DMF and the fluorescence of reference Rh6G in ethanol), under excitation of 532 nm CW diode laser.

Fig. S5 Excitation spectra of PdOEP (100 μ M in DMF) and the reference (ZnPc in DMSO, 0.5 μ M), when the λ_{em} is fixed at 575 nm. Curve (b) for ZnPc is obtained by reducing the original measured data 50 times in the intensity scale.

Fig. S6 Red-to-yellow upconversion spectrum (**a**) of **PdOEP** (100 μ M) in DMF without degassing and fluorescnece spectrum (**b**) of ZnPc in DMSO (0.5 μ M), under excitation of 655 nm CW diode laser. Curve (**b**) for ZnPc is obtained by reducing the original measured data 100 times in the intensity scale.

Fig. S7 Red-to-blue upconversion spectrum (**a**) of **DPA/PdOEP** (2.5 mM/100 μ M) in degassing DMF and fluorescnece spectrum (**b**) of ZnPc in DMSO (0.5 μ M), under excitation of 655 nm CW diode laser. Curve (**b**) for ZnPc is obtained by reducing the original measured data 100 times in the intensity scale.

Fig. S8 The upconversion spectra of DPA/PdOEP solution (degassing DMF) with different concentration of DPA ([PdOEP]=100 μ M), under excitation of 655 CW diode laser (2W·cm⁻²).

Fig. S9 The upconversion spectra of DPA/PdOEP solution (degassing DMF) with different concentration of PdOEP ([DPA]=2.5 mM), under excitation of 655 CW diode laser $(2W \cdot cm^{-2})$.

References:

- Tanya N. Singh-Rachford, Felix N. Castellano, Photon upconversion based on sensitized triplet-triplet annihilation, *Coordination Chemistry Reviews*, 2010, 254: 2560.
- Olmsted John, Calorimetric Determinations of Absolute Fluorescence Quantum Yields, Journal of Physical Chemistry, 1979, 83 (20): 2581.
- Lin Zhu, Changqing Ye, Guoliang Dai, Xiaomei Wang, Xue Yu, Teng Liu, Xutang Tao, Highly-efficient upconversion via direct one-photon absorption of xanthenebased chromophores, *Dyes and Pigments*, 2020, 172: 107853.
- A Ogunsipe, J-Y Chen, T Nyokong, Photophysical and photochemical studies of zinc (II) phthalocyanine derivatives-effects of substituents and solvents. *New Journal of Chemistry*, 2004, 28: 822.