Supplementary Data

Fast and High Photoresponsivity Gallium Telluride / Hafnium Selenide Van der Waals Heterostructure photodiode

Amir Muhammad Afzal^{*1}, Shoail Mumtaz², Muhammad Zahir Iqbal^{*3}, Muhammad

Waqas Iqbal*¹, Alina Manzoor⁴, Ghulam Dastgeer⁵, M. Javaid Iqbal⁶, Yasir Javed⁷,

Rajwali Khan⁸, Naveed Akhtar Shad⁴, M Munir Sajid⁴, Tausif Zahid⁹

¹Department of Physics, Riphah International University, 13 Raiwind road, Lahore, Pakistan

²Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea,

³Nanotechnology Research Laboratory, Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa, Pakistan

⁴Department of Physics, GC University, Faisalabad, 38000, Pakistan

⁵Department of Physics & Astronomy and Graphene Research Institute-Texas Photonics Center International Research Center (GRI–TPC IRC), Sejong University, Seoul 05006, Korea,

⁶Centre of Excellence in Solid State Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan

⁷Department of Physics, University of Agriculture, Faisalabad, 38000, Pakistan

⁸Department of Physics Lakki Marwat University, Lakki Marwat, KPK Pakistan

⁹Department of electrical Engineering, Riphah International University, 13 Raiwind road, Lahore, Pakistan

Corresponding author: a.m.afzal461@gmail.com, zahir.upc@gmail.com, waqas.iqbal@riphah.edu.pk

Figure S1: (a) Image of the p-GaTe/n-HfSe₂ heterojunction device obtained by using AFM, (b) is the height profile of p-GaTe flake. The thickness of the GaTe flake is observed around 13 nm and (c) is the height profile of n-HfSe₂ flake. The thickness of the HfSe₂ flake is 17 nm.

Figure S2. $I_{ds} - V_{ds}$ curves of p-GaTe at different temperatures.

Figure S3. $I_{ds} - V_{ds}$ curves of HfSe₂ at different temperatures.

Figure S4. Gate-dependent rectification of p-GaTe/n-HfSe2 vdW heterojunction diode in linear scale.

Figure S5. (a) Thickness dependent current-voltage characteristics of GaTe/HfSe₂ vdW heterostructure. (b) Changes in rectification ratio with the thickness of GaTe. (c) Thickness dependent current-voltage characteristics of GaTe/HfSe₂ vdW heterostructure (d) Changes in rectification ratio with the thickness of HfSe₂.

Figure S6. Photoelectric conversion efficiency (optical power values generated by the p-GaTe/n-HfSe₂ vdW heterostructure diode) for powers of illuminated laser light.