Towards shape-oriented Bi-doped CoCr₂O₄ nanoparticles from theoretical and experimental perspective: Structural, Morphological, Optical, Electrical and Magnetic properties

K. Manjunatha^{1,8}, V. Jagadeesha Angadi^{2*}, M. C. Oliveira³, S. R. de Lazaro⁴, E. longo⁵,
R. A. P. Ribeiro^{6*}, S. O. Manjunatha,⁷ N. H. Ayachith⁹

 ¹Department of Physics, School of Engineering, Presidency University, Bangalore-560064, India
 ²Department of Physics, P.C. Jabin Science College, Hubballi-580031, India
 ³LSQM – Laboratory of Chemical Synthesis of Materials – Department of Materials Engineering, Federal University of Rio Grande do Norte – UFRN, P.O. Box 1524, Natal RN, Brazil.
 ⁴Department of Chemistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, Zip code: 84030-900, Ponta Grossa, PR, Brazil
 ⁵CDMF-UFSCar, Universidade Federal de São Carlos, PO Box 676, 13565–905 São Carlos, SP, Brazil
 ⁶Department of Chemistry, Minas Gerais State University, Av. Paraná, 3001, Zip-Code: 35501-170, Divinópolis, MG, Brazil
 ⁷Department of Physics, FMPS, Ramaiah University of Applied Sciences, Bengaluru-560058, India
 ⁸Material Research Centre, School of Engineering, Presidency University, Bangalore-560064, India

⁹KLE Technological University, Hubballi-580031, India

*Corresponding author: <u>renan.ribeiro@uemg.br; jagadeeshbub@gmail.com</u>

Figure S1: Solution combustion technique flow chart for $Co_{(1-x)}Bi_xCr_2O_4$ (where, x= 0.00, 0.05, 0.10) nanoparticles.

Figure S2: FTIR spectra of $Co_{(1-x)}Bi_xCr_2O_4$ (where, x= 0.00, 0.05, 0.10) nanoparticles

Figure S3: UV-Visible absorbance spectra of $Co_{(1-x)}Bi_xCr_2O_4$ (where, x= 0, 0.05, 0.10) nanoparticles

Figure S4. Schematic representation of chemical environment for $CoCr_2O_4$ (100), (110), (111), and (311) surfaces.

Bi ³⁺	Vibration band	Vibration band	K _T	K _O
concentration	(cm ⁻¹) at the	(cm ⁻¹) at		
	tetrahedral site	octahedral site		
x= 0	606.71	480.71	2.652 x 10 ⁵	1.665 x 10 ⁵
x= 0.05	604.93	478.78	2.636 x 10 ⁵	1.651 x 10 ⁵
x= 0.10	608.50	482.79	2.667 x 10 ⁵	1.679 x 10 ⁵

Table S1: Vibration bands, K_T and K_O values of $Co_{(1-x)}Bi_xCr_2O_4$ (where, x= 0.00, 0.05, 0.10)nanoparticles.

Identified elements	Theoretical	Experimental			
	stoichiometry	stoichiometry			
		from EDS analysis			
Cr	1	1			
Со	1	1			
Bi	0	0			
Cr	1	1			
Со	0.95	0.946			
Bi	0.05	0.054			
Cr	1	1			
Со	0.90	0.8831			
Bi	0.10	0.1168			

Table S2: EDS analysis of $Co_{(1-x)}Bi_xCr_2O_4$ (where, x= 0, 0.05, 0.10) nanoparticles

Mo	odels	M-O	$\Delta_{\rm d}$	BAV		
CoCr O	[Co	D ₄]	1.995 (4x)	0.00	0.0	
$CoCl_2O_4$	[CrO	D ₆]	1.994 (6x)	0.00	41.69	
		Co(1)	1.994 (3x) 2.086 (1x)	0.01	10.30	
	[CoO ₄]	Co(2)	1.970 (1x) 2.010 (1x) 2.026 (2x)	0.01	5.28	
		Co(3)	1.973 (2x) 2.008 (2x)	0.01	1.93	
		Co(4)	1.992 (4x)	0.00	0.37	
	[Bi0	D ₄]	2.180 (4x)	0.00	0.02	
	[CrO ₆]	Cr(1)	1.974 (1x) 1.986 (1x) 2.004 (2x) 2.019 (2x)	0.01	59.64	
		Cr(2)	1.969 (1x) 1.989 (1x) 1.992 (1x) 1.997 (1x) 2.020 (2x)	0.01	57.70	
		Cr(3)	1.950 (1x) 1.993 (2x) 2.012 (1x) 2.030 (2x)	0.01	49.06	
		[CrO ₆]	Cr(4)	1.929 (1x) 1.988 (1x) 1.992 (1x) 2.021 (1x) 2.039 (1x) 2.049 (1x)	0.02	75.81
		Cr(5)	1.901 (1x) 2.007 (2x) 2.012 (2x) 2.053 (1x)	0.02	48.36	
		Cr(6)	1.965 (1x) 1.985 (2x) 2.009 (2x) 2.022 (1x)	0.01	33.42	

Table S3. Calculated M-O bond distances in Å (M = Co, Sc, and Cr), bond length distortion indexes (Δ_d) in Å, and bond angle variances (BAV) in degree, for the pure and Bi-doped CoCr₂O₄ materials.

(100)		$\Delta \mu_{Co} (eV)$												
		-6	-5.5	-5	-4.5	-4	-3.5	-3	-2.5	-2	-1.5	-1	-0.5	0
$\Delta \mu_{\mathrm{Cr}}$ (eV)	-3	2.06	1.95	1.83	1.72	1.60	1.49	1.38	1.26	1.15	1.03	0.92	0.80	0.69
	-2.5	2.06	1.95	1.83	1.72	1.60	1.49	1.38	1.26	1.15	1.03	0.92	0.80	0.69
	-2	2.06	1.95	1.83	1.72	1.60	1.49	1.38	1.26	1.15	1.03	0.92	0.80	0.69
	-1.5	2.06	1.95	1.83	1.72	1.60	1.49	1.38	1.26	1.15	1.03	0.92	0.80	0.69
	-1	2.06	1.95	1.83	1.72	1.60	1.49	1.38	1.26	1.15	1.03	0.92	0.80	0.69
	-0.5	2.06	1.95	1.83	1.72	1.60	1.49	1.38	1.26	1.15	1.03	0.92	0.80	0.69
	0	2.06	1.95	1.83	1.72	1.60	1.49	1.38	1.26	1.15	1.03	0.92	0.80	0.69
(110)		$\Delta \mu_{Co} (eV)$												
(1	10)	-6	-5.5	-5	-4.5	-4	-3.5	-3	-2.5	-2	-1.5	-1	-0.5	0
	-3	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
	-2.5	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
e V.	-2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ċ.	-1.5	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16
η	-1	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32
	-0.5	1.48	1.48	1.48	1.48	1.48	1.48	1.48	1.48	1.48	1.48	1.48	1.48	1.48
	0	1.64	1.64	1.64	1.64	1.64	1.64	1.64	1.64	1.64	1.64	1.64	1.64	1.64
	11)	$\Delta\mu_{Co} (eV)$												
(1		-6	-5.5	-5	-4.5	-4	-3.5	-3	-2.5	-2	-1.5	-1	-0.5	0
	-3	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
	-2.5	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
e h	-2	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03
С, (-1.5	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16
hΓ	-1	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
	-0.5	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43
	0	1.56	1.56	1.56	1.56	1.56	1.56	1.56	1.56	1.56	1.56	1.56	1.56	1.56
(3	11)			1			4	μ_{Co} (e	V)					
(5		-6	-5.5	-5	-4.5	-4	-3.5	-3	-2.5	-2	-1.5	-1	-0.5	0
	-3	1.23	1.13	1.02	0.92	0.82	0.71	0.61	0.51	0.40	0.30	0.20	0.09	-0.01
(1)	-2.5	1.37	1.26	1.16	1.06	0.95	0.85	0.75	0.64	0.54	0.44	0.33	0.23	0.13
	-2	1.51	1.40	1.30	1.20	1.09	0.99	0.89	0.78	0.68	0.58	0.47	0.37	0.27
C.	-1.5	1.64	1.54	1.44	1.33	1.23	1.13	1.02	0.92	0.82	0.71	0.61	0.51	0.40
μΔ	-1	1.78	1.68	1.57	1.47	1.37	1.26	1.16	1.06	0.95	0.85	0.75	0.64	0.54
	-0.5	1.92	1.82	1.71	1.61	1.51	1.40	1.30	1.20	1.09	0.99	0.89	0.78	0.68
	0	2.06	1.95	1.85	1.75	1.64	1.54	1.44	1.33	1.23	1.13	1.02	0.92	0.82

Table S4. Calculated Surface Energy (J/m^2) for (100), (110), (111) and (311) surfaces of CoCr₂O₄ as function of the Cr and Co chemical potential (eV).