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General information

All oxygen- and moisture-sensitive manipulations were carried out under an inert atmosphere.
All the chemicals were purchased from commercial sources and used as received unless stated
otherwise. Toluene was refluxed over Na and distilled under dry argon. The 500 MHz 'H and
125MHz 3C NMR spectra were recorded on a Bruker Ascend 500 spectrometer using CDCl;
and DMSO-D; as solvent and tetramethylsilane (TMS) as an internal reference. High-resolution
electrospray (ESI) mass spectra were performed on SCIEX TripleTOF6600 nano LCMS. UV-
Vis absorption spectra were recorded on a Shimadzu UV-2700 recording spectrophotometer.
Photoluminescence (PL) spectra were recorded on a Hitachi F-4600 fluorescence
spectrophotometer. Phosphorescence spectra of thin films were conducted at 77K.
Thermogravimetric analysis (TGA) was recorded on a TA Q50 instrument under nitrogen
atmosphere at a heating rate of 10°C/min from 25 to 800 °C. The temperature of degradation (T)
was correlated to a 5% weight loss. Differential Scanning Calorimetry were carried out on a TA
Q200. The glass transition temperature (T,) was determined from the second heating scan at a
heating rate of 10°C min"! from 25 to 250 °C.
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Cyclic voltammetry (CV) was carried out in nitrogen-purged tetrahydrofuran or acetonitrile
(reduction scan) or dichloromethane (oxidation scan) at room temperature with a CHI
voltammetric analyzer. Tetrabutylammoniumhexafluorophosphate (0.1 M) was used as the
supporting electrolyte. The conventional three-electrode configuration consisted of a platinum
working electrode, a platinum wire auxiliary electrode and an Ag wire pseudo-reference
electrode with ferrocenium ferrocene (Fc*/Fc) as the internal standard. Cyclic voltammograms
were obtained at scan rate of 100 mV/s. Formal potentials were calculated as the average of
cyclic voltammetric anodic and cathodic peaks. The HOMO energy levels of the compounds
were calculated according to the formula: -[4.8 + (E12(ox/red) - E12Feret))] €V. The onset potential
was determined from the intersection of two tangents drawn at the rising and background current
of the cyclic voltammogram. The PL lifetimes were measured by a single photon counting
spectrometer from Edinburgh Instruments (FLS920) with a Picosecond Pulsed UV-LASTER
(LASTER377) as the excitation source. The samples were placed in a vacuum cryostat chamber
with the temperature control. The solid state absolute PLQY's were measured on a Quantaurus -
QY measurement system (C9920-02, Hamamatsu Photonics) equipped with a calibrated
integrating sphere in the host of mCP (5 wt%) and all the samples were excited at 342 nm.
During the PLQY measurements, the integrating sphere was purged with pure and dry argon to
maintain an inert environment. The ground state and excited states molecular structures were

optimized at the B3LYP-D3(BJ)/def2-SVP and PBE0/def2-SVP respectively.
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Figure S1. '"H NMR spectrum of TATC-TRZ in CDCl; (500 MHz, 25 °C).
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Figure S2. 3C NMR spectrum of TATC-TRZ in CDCl; (125 MHz, 25 °C).
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Figure S3. 'H NMR spectrum of TATP-TRZ in CDCl; (500 MHz, 25 °C).
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Figure S4. 3C NMR spectrum of TATP-TRZ in CDCl; (125 MHz, 25
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Figure S5. 'H NMR spectrum of TATP in DMSO-Dg (500 MHz, 25 °C).
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Figure S6. 'H NMR spectrum of TATP in DMSO-Dg¢ (500 MHz, 25 °C).
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Figure S7. 3C NMR spectrum of TATC in DMSO-Dg (125 MHz, 25 °C).

S6



Q o ol 2 ea
m < " . d .-‘.-Oa. m
— _ - S ’ [=]
= = (uu? I T
< g S #,° %007
N— A J ! 8y
© ] S0
s e
0 = " pis
- ] Y
: g
s 1
2 258
] S qm«.m .
= P %
s = k- N 23
(=] g 1ﬂ0 Q .;Ja.. 0.-.-‘. LJVBJU;
F i o o 5 ..a.-oacaao.f,_ > .,_-am >
D T (a9 .m N 8% s Mw.una.,“f Q
5 < S pEapeleda. T
w m a e A ™ >
LY y
i 0 [ 2 4
> - (
© X S
F wf S 4
) o )
FE fred & o i)
oo o .-
EE o
<< N
P =
- 2]
[ T s
e 2
==
) : =g
=, (vr) Juauing = 2
~ £
- < 8
i - S ¢
=9
E R -2 = o
oo f L)
== | S QO =
g = = B
L @ < 3
oL = 0
= o [T
b )
S)
L@ 2 n S
'~ g o
] s L
7 = 5
c an
T o
©% E =
J o m a)
]
L = .m
= S g
-1 1) ~
° = )
: %5
(wr) Juaung w 4
5]
= o
% =
A
=
=]
]
o N4
= ©

Figure S9. Natural transition orbitals (NTOs) of the hole-particle contribution for (a) TATC-TRZ and (b) TATP-
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TRZ at S, and T, excited state.
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Figure S10. Transient photoluminescence decay curves of (a) TATC-TRZ, (b) TATP-TRZ in mCP (5 wt% of

emitter) doped film under oxygen free condition. Fluorescence spectra both at 300 K and 77 K and Phosphorescence

spectra at 77K of (c) TATC-TRZ and (d) TATP-TRZ in mCP (5 wt% of emitter) doped film.
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Figure S11. Phosphorescence spectra at 77 K of TATP (donor), TRZ-Br (acceptor) and TATP-TRZ (emitter) in

neat film.
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Figure S12. Fluorescence spectra (a)and (b) of TATC-TRZ and TATP-TRZ in different solvents. (HEX = n-
hexane, TOL = toluene, DCM = dichloromethane, EA = ethyl acetate and THF = tetrahydrofuran, ¢ = 1.0 x 10-> M).
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Figure S13. (a) The energy level diagrams of the doped device and (b) chemical structures of the functional
materials used in the devices. (c) Current density versus voltage curves. (d) Luminance versus voltage curve. ()
External quantum efficiency versus current density curves. (Inset: normalized EL spectra of the devices. (f) Current
efficiency (CE) versus current density and (g) Power efficiency (PE) versus current density of the devices.
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Table S1. Photophysical characterization for two emitters of TATC-TRZ and TATP-TRZ

ApL S T AEgr? ¢ Tq¢ Dp/ D, /Dy8 k/ kisc” Kpisc”
Compound
(nm) (V) (V) (eV) (ns) (ps) (%) (%) (107s")  (107s1) (107s)
TATC-TRZ 526 2.72 2.71 0.01 19.9 14 86 0.15/0.71 0.73 4.15 0.42
TATP-TRZ 511 2.75 2.71 0.04 21.1 1.4 89 0.23/0.67 1.08 3.53 0.28

“Measured in doped mCP films (5 wt%) at room temperature. * Calculated from the onset of the fluorescence spectra of two emitters doped
into mCP films (5 wt%) at 77K. ¢ Calculated from the onset of the phosphorescence spectra of two emitters doped into mCP films (5 wt%)
at 77K. ¢ A Egr = S;® —T;¢ . ¢ The prompt and delayed fluorescence lifetimes of two emitters doped into mCP films (5 wt%) at room
temperature. / The total PLQYs of two emitters doped into mCP films (5 wt%) under oxygen free condition at room temperature. ¢ The
prompt and delayed PLQY under oxygen free conditions in mCP host film. ” Rate constant of radiative, intersystem crossing and reverse

intersystem crossing process in mCP host film.
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Figure S14. AFM images of TATC-TRZ and TATP-TRZ in mCP (5 wt% of emitter) doped film prepared by spin-
coating with an annealing temperature of 80 °C.

Analysis of rate of constants

Time-resolved transient photoluminescence decay measurements were utilized to research the
delayed fluorescence phenomenon of the molecule in neat film as shown in Figure 5. Rate

constants of different kinetic processes were calculated following the equations (S1) - (S6)

below:

kr: CDPF/TPF (Sl)
D=k, /(k + kny) (S2)
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cI)PF = kr / (kr + kisc + knr) (83)

krise = kpkq® tapr/ kisc Ppr (54)
kp: l/TpF (SS)
kdz l/TTADF (86)

Where k;, knr, kise, krisc represent the rate constant of radiative, non-radiative, intersystem
crossing and reverse intersystem crossing, respectively; @, @pr, @rapr, Tpr and Trapr represent
total PLQY, quantum yield of the prompt component, , lifetimes of the prompt and delayed

components, respectively.
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