Supporting Information for

Terbium(III) bis-phthalocyaninato single-molecule magnet encapsulated in a single-walled carbon nanotube

Keiichi Katoh,*^a Junya Sato, ^b Ryo Nakanishi,*^b Ferdous Ara, ^c Tadahiro Komeda, ^c Yuki Kuwahara, ^d Takeshi Saito, ^d Brian K. Breedlove, ^b and Masahiro Yamashita*^{b, e}

^{a.} Department of Chemistry, Graduate School of Science, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan

E-mail: kkatoh@josai.ac.jp

- ^{b.} Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- ^{c.} Institute of Multidisciplinary Research of Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-0877, Japan
- ^{d.} National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
- ^{e.} School of Materials Science and Engineering, Nankai University, Tianjin 300350, China

CONTACT AUTHOR

E-mail: kkatoh@josai.ac.jp (K.K)

Fig. S1 PXRD pattern of $TbPc_2$ at 298 K.

 $\label{eq:Fig.S2} \textbf{Fig. S2} \quad UV\mbox{-vis-NIR of } TbPc_2 \mbox{ in } CH_2Cl_2 \mbox{ at } 298 \mbox{ K}.$

Fig. S3 SEM image of SWCNT (a, b) before and (c, d) after cleaning are shown together with elemental analysis by EDX.

Scheme S1 Synthetic procedures for TbPc₂ encapsulated in SWCNTs.

Fig. S4 TEM image and EDX of SWCNT (left) and TbPc₂@SWCNT (right).

Fig. S5 HAADF–STEM images of $TbPc_2@SWCNT$. White spots are thought to be from Tb ions.

Fig. S6 (a) XPS spectrum of the background. (b) XPS spectrum of $TbPc_2@SWCNT$. Black arrows indicate the background.

Fig. S7 Field-cooled (FC) measurements. Temperature (*T*) dependence of (a) χ and (b) χT for powder samples of SWCNT and TbPc₂@SWCNT at 1000 Oe.

Fig. S8-1 Frequency (ν) and temperature (T) dependences of the (a) in-phase (χ_{M} ') and (b) out-of-phase (χ_{M} ") ac magnetic susceptibilities of TbPc₂@SWCNT in an H_{dc} of zero. The increase in χ_{M} ', the ac magnetic susceptibility, in the high temperature region is considered to be derived from the SWCNTs (Fig. S8-2a).

Fig. S8-2 Frequency (ν) and temperature (*T*) dependences of the (a) in-phase (χ_M') and (b) out-of-phase (χ_M'') ac magnetic susceptibilities of SWCNT in an H_{dc} of zero.

Fig. S9 Frequency (ν) and temperature (*T*) dependences of the out-of-phase (χ_{M} ") ac magnetic susceptibilities of TbPc₂@SWCNT in an H_{dc} of zero. Since the inclusion rate of TbPc₂ is low, the accuracy of the peak top temperature of χ " has a large error at 1, 100, and 1000 Hz.

Table S1 . Magnetic relaxation time (τ) estimated from the peak top temperature of γ	ť″
in the frequency dependence of χ''	

Peak top T of χ_{M} " / K	<i>v</i> ∕Hz	<i>τ</i> /s
31	1	0.15915
35	10	0.015915
38	50	0.0031831
40	100	0.0015915
42	200	0.00079577
44	400	0.00039789
45	600	0.00026526
47	800	0.00019894
47	1000	0.00015915