Electronic Supplementary Information (ESI)

Modulation of the electronic states and magnetic properties of nickel catecholdithiolene complex by oxidation-coupled deprotonation

So Yokomori,^a Shun Dekura,^{*a} Akira Ueda,^b Reiji Kumai,^c Youichi Murakami,^c and Hatsumi Mori^{*a}

- ^{a.} The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 2778581, Japan. E-mail: s.dekura@issp.u-tokyo.ac.jp, hmori@issp.u-tokyo.ac.jp; Fax: +81 4 7136 3410; Tel: +81 4 7136 3201
- ^{b.} Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- ^{c.} Condensed Matter Research Center (CMRC) and Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 3050801, Japan

Table of Contents

Preparation and crystal structures of 3-Ni-4H·DMSO, 3-Ni-3H·0.5H ₂ O, 3-Ni-3H·0.5THF, and			
3-Ni-2H·2H ₂ O	S2–S10		
Magnetic properties of 3-Ni-4H·DMSO	S11–S12		
Differential Fourier map and calculation model for 3-Ni-3H·0.5THF			
Compositions and structures of crystals with neutral nickel complex	S14–S18		
¹ H NMR spectrum of the green powder obtained from 2-Ni	S19		
References			

Preparation and crystal structures of 3-Ni-4H·DMSO, 3-Ni-3H·0.5H₂O, 3-Ni-3H·0.5THF, and 3-Ni-2H·2H₂O

Simplified synthetic scheme and crystallographic parameters for the obtained crystals were described in the following Figure S1 and Table S1, respectively.

H₃(catdt)₂]·0.5THF, **3-Ni-3H·0.5THF** using previously reported (Ph₄P)₃[Ni-H₄(catdt)₂]Br₂.¹

Ni-3H·0.5THF, a	I·0.5THF, and 3-Ni-2H·2H ₂ O.			
	3-Ni-4H·DMSO	3-Ni-3H·0.5H ₂ O	3-Ni-3H·0.5THF	3-Ni-2H-2H ₂ O
formula	C ₃₈ H ₃₄ NiO ₅ PS ₅	C ₃₆ H ₂₉ NiO ₅ PS ₄	C ₃₈ H ₃₁ NiO _{4.5} PS ₄	$C_{60}H_{46}NiO_6P_2S_4$
formula weight	820.66	759.51	777.55	1111.86
crystal system	triclinic	monoclinic	triclinic	triclinic
space group	$P\overline{1}$	$P2_{1}/c$	$P\overline{1}$	$P\overline{1}$
<i>a</i> (Å)	10.188(2)	7.1612(5)	11.3377(2)	13.9446(3)
<i>b</i> (Å)	13.333(3)	16.3222(8)	12.8849(2)	12.5782(3)
<i>c</i> (Å)	13.7783)	28.1125(15)	13.4427(7)	17.5902(7)
α (deg.)	92.947(3)	90	80.666(1)	70.3620(10)
β (deg.)	99.616(4)	90.563(5)	69.189(1)	76.0230(10)
γ (deg.)	94.177(4)	90	69.799(1)	104.3310(10)
$V(\text{\AA}^3)$	1836.5(8)	3285.8(3)	1720.99(10)	2631.12(14)
Ζ	2	4	2	2
$T(\mathbf{K})$	293	293	293	293
$D_{ m calc} ({ m g}\!\cdot\!{ m cm}^{-3})$	1.484	1.535	1.502	1.403
λ (Å)	0.71073	0.71073	0.71073	0.99968
$R_{ m int}$	0.0218	0.0878	0.0163	0.0307
$R_1(I > 2.00\sigma(I))$	0.0478	0.0890	0.0368	0.0386
wR_2	0.12(1	0.1.475	0.0001	0.1074
(All reflections)	0.1361	0.1475	0.0981	0.1074
GOF	1.065	1.108	1.032	0.740
CCDC	2065214	2065215	2065216	2065217

Table S1. Crystallographic parameters for the crystals 3-Ni-4H·DMSO, 3-Ni-3H·0.5H₂O, 3-

Fig. S2 Structure of the DMSO-containing crystal **3-Ni-4H·DMSO**. (a) Unit cell and (b) overview of the 3D framework structure (left), and the top view of the framework (right). Light green = Ni, yellow = S, orange = P, gray = C, red = O, and white = H.

Fig. S3 Details of the H-bonded structure and molecular structure in **3-Ni-4H · DMSO**. (a) The 1D Hbonded zig-zag chains in the 3D framework structure. Blue and green molecules belong to different 1D chains, respectively. (b) Weak intermolecular H-bonds on a node of the framework structure. (c) The molecular structures and bond lengths of crystallographically half-independent nickel complexes. Here, d_{C-C} indicates the C–C bond lengths, and $d_a \sim d_h$ correspond to the C–O or C–S bond described in Table 1 in the main text.

Fig. S4 Structure of the H₂O-containing crystal **3-Ni-3H·0.5H₂O**. (a) Unit cell and (b) overview of the 3D framework structure viewed along each axis. In (a), light green = Ni, yellow = S, orange = P, gray = C, red = O, and white = H.

Fig. S5 Structure of the THF-containing crystal, **3-Ni-3H·0.5THF**. (a) Unit cell and (b) overview of the 2D sheet structure viewed along each axis. In (a), light green = Ni, yellow = S, orange = P, gray = C, red = O, and white = H.

Fig. S6 (a) Correspondence between the 2D sheet structure and 1D H-bonded chains of **3-Ni-3H-0.5THF**. (b) Neighboring 1D H-bonded chains. Colored nickel complexes belong to the same 1D H-bonded chain (left) and π - π interactions (C···C contacts) between nickel complexes belonging to each chain (right). The orange box focuses on the two nickel complexes belonging to different 1D H-bonded chains.

Fig. S7 The molecular structures and bond lengths of crystallographically independent nickel complex in **3-Ni-3H·0.5H₂O**.

Fig. S8 The molecular structures and bond lengths of crystallographically independent nickel complex in **3-Ni-3H·0.5THF**.

Fig. S9 Structure of the water-containing crystal, $3-Ni-2H\cdot 2H_2O$. (a) Unit cell and (b) the 2D H-bonded sheet structure viewed along each axis.

Fig. S10 Molecular structure, bond lengths (Å) and the possible chemical structure of the nickel complex in $3-Ni-2H-2H_2O$.

Fig. S11 (a) ESR signals measured under the magnetic field rotated around the *a* axis of **3-Ni-4H·DMSO** single crystal. (b) Lorentzian fitting of the ESR signal at 0 degrees in (a). (c) Angle dependence of the *g* value estimated from the Lorentzian fitting for the measurements.

The temperature dependence of the magnetic susceptibility of **3-Ni-4H·DMSO** was shown in Fig. S12. The Curie constant obtained by the fitting (0.382 emu K mol⁻¹) gives the *g* value to be 2.016 in the case of S = 1/2. This value is similar to that obtained from ESR measurement, rather than that of organic radicals (2.003).

Fig. S12. Temperature dependences on the magnetic susceptibility of **3-Ni-4H·DMSO** polycrystals. (a) χ -*T* plot (black solid line) together with χ *T*-*T* plot (blue circles). (b) χ^{-1} -*T* plot (blue circles) and Curie-Weiss fitting (red solid line).

Differential Fourier map and calculation model for 3-Ni-3H·0.5THF

Fig. S13 (a) Differential Fourier maps around the short H-bond between hydroxy groups of nickel complex calculated from single-crystal XRD data. The threshold value of the differential Fourier surface is 0.300 electrons/Å³ a 293 K and 0.400 electron/Å³ at 130 K, respectively. The inset figures show enlarged views of the short $[O-H\cdots O]$ H-bonding part. These figures were visualized by the Olex2 software. (b) Positional disorder of the protons in the short H-bond part considered in the structural analysis (left) and structural model used on the DFT calculation of **3-Ni-3H·0.5THF** (right).

Compositions and structures of crystals with neutral nickel complex

The chemical formulas of two crystals having neutral nickel complex are $(Ph_4P)_2[Ni-H_4(catdt)_2]Br_2 \cdot DMF$ (DMF: *N,N*-dimethylformamide); **3-Ni-4H·DMF**, and $(Ph_4P)_2[Ni-H_3(catdt)_2]_2[Ni-H_4(catdt)_2] \cdot solv.$; **3-Ni-3,4H·solv**, respectively. The SQUEEZE equipped in the PLATON program²⁻⁴ was used to remove disordered crystal solvent molecules in the latter crystal. The recrystallizations were performed by liquid-liquid diffusion method of DMF and Et₂O (~1:3) using **2-Ni** for **3-Ni-4H·DMF** (under atmosphere) and of Acetone/Acetic acid/Hexane (~10:1:30) solution for using the resulting green powder prepared from **2-Ni** for **3-Ni-3,4H·solv** (under argon).

crystals	3-Ni-4H·DMF	3-Ni-3,4H∙solv
formula	$C_{114}H_{102}Br_4N_2NiO_8P_4S_4\\$	C42H31Ni1.5O6PS6
formula weight	2258.44	952.13
crystal system	triclinic	triclinic
space group	ΡĪ	$P\overline{1}$
<i>a</i> (Å)	9.4401(18)	10.770(5)
<i>b</i> (Å)	14.660(3)	13.090(6)
<i>c</i> (Å)	21.242(4)	15.722(7)
α (deg)	92.947(3)	71.015(14)
β (deg)	83.678(7)	84.98(2)
$\gamma(\text{deg})$	77.178(6)	87.58(2)
$V(Å^3)$	77.841(6)	2087.6(17)
Ζ	1	2
<i>T</i> (K)	293	293
D_{calc} (g· cm ⁻³)	1.341	1.515
λ (Å)	0.71073	0.71073
$R_{ m int}$	0.0259	0.0880
$R_1(I > 2.00\sigma(I))$	0.0641	0.1176
wR ₂ (All reflections)	0.2082	0.3965
GOF	1.060	1.013
CCDC	2065218	2065219

Table S2. The crystallographic data for the crystals consisting of neutral non-deprotonated nickel complex, [Ni-H₄(catdt)₂].

Fig. S14 Structure of the neutral nickel complex crystal **3-Ni-4H·DMF**. (a) Unit cell and (b) overview of the assembled structure viewed along *a* and *b* axis. (c) H-bonding manner around the nickel complex. (d) Molecular structure and bond lengths of the nickel complex. In (a), (c), and (d), light green = Ni, blown = Br, yellow = S, orange = P, blue = N, gray = C, red = O, white = H.

Fig. S15 Structure of the neutral nickel complex crystal **3-Ni-3,4H·solv**. (a) Unit cell and (b) overview of the 3D framework structure viewed along *a* and *b* axis. Black molecules show neutral non-deprotonated nickel complex and gray molecules indicate monoanionic one-deprotonated nickel complex. In (a), light green = Ni, yellow = S, orange = P, gray = C, red = O, white = H.

Fig. S16 Details of the H-bonded structure and the molecular structures in **3-Ni-3,4H·solv**. (a) 2D Hbonded framework structure based on the nickel complexes. There is short [O–H···O] H-bonds between the deprotonated hydroxy group and the non-deprotonated hydroxy group of the nickel complexes. Black molecules show neutral non-deprotonated nickel complex and gray molecules indicate monoanionic one-deprotonated nickel complex. (b) Stacking manner of the 2D H-bonded frameworks and C···C contacts (π - π interactions) between the nickel complexes belonging to different 2D H-bonded framework. The grey/black and red molecules show the nickel complexes belonging to individual neighboring 2D H-boned frameworks. (c) Molecular structures and bond lengths of the nickel complexes. Neutral nickel complex is crystallographically half-molecules independent whereas monoanionic nickel complex is crystallographically one-molecule independent.

Fig. S17 ¹H NMR spectrum of the green powder prepared from **2-Ni** (300 MHz, DMSO-*d*₆). Multiplets at 7.65–8.10 ppm were attributed to protons of Ph_4P^+ cations. Singlets at 6.08, 7.02, and 7.10 ppm should be derived from the minor oxidized species of the nickel complex [1–/4H], [1–/3H], and/or [2–/2H], which are in a closed-shell state and thus NMR active.

References

- D. Coucouvanis, A. R. Paital, Q. Zhang, N. Lehnert, R. Ahlrichs, K. Fink, D. Fenske,
 A. K. Powell and Y. Lan, *Inorg. Chem.*, 2009, 48, 8830.
- 2 P. v. d. Sluis and A. L. Spek, Acta Crystallogr., Sect. A: Found. Crystallogr., 1990, 46, 194.
- 3 A. L. Spek, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2009, 65, 148
- 4 A. L. Spek, Acta Crystallogr. Sect. C, 2015, 71, 9.