Supporting Information Optimization of bright, highly flexible and humidity insensitive porphyrin-based oxygen-sensing materials

Xiaolei Li,[†] Emmanuel Roussakis,[†] Juan Pedro Cascales,[†] Haley L. Marks,^{†,‡}

Lilian Witthauer,[†] Michael Evers,[‡] Dieter Manstein,[‡] and Conor L. Evans^{*,†}

[†]Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA

‡Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA

E-mail: evans.conor@mgh.harvard.edu

Figure S1: Proton NMR spectrum of silanated porphyrin

Dye /substrate materials	Sensitivity of phosphorescence	Lifetime (µs)	
	(I ₀ /I _{air})	air	nitrogen
Pivaloyl porphyrin /PPMA /filter paper	14.12±2.39	18.15±2.35	96.17±1.56
Pivaloyl porphyrin /PPMA /white coating	11.08±1.35	17.65±0.61	94.58±1.55

Table S1: Oxygen sensitivity and lifetime of pivaloyl porphyrin /PPMA embedded within different substrate materials under air and nitrogen conditions.

Figure S2: MALDI-TOF mass spectrum of silanated porphyrin.

Figure S 3: Visible phosphorescence intensity change of a PPMA-based material from ambient air to deoxygenated conditions, upon excitation by a handheld UV-flashlight. The photographs shown were captured by a commercial point-and-shoot camera.

	Sensitivity of phosphorescence	Lifetime (µs)	
	(I ₀ /I _{air})	air	nitrogen
Before autoclave	11.08±1.35	17.65±0.61	94.58±1.55
After autoclave	8.38±2.76	22.50±1.57	83.90±2.17

Table S2: Oxygen sensitivity and lifetime of PPMA-based material before/after autoclave under air and nitrogen conditions.

Figure S 4: Oxygen sensitivity of 5uM, 10uM, 30uM, 60uM, 90uM pivaloyl porphyrin embedded within PPMA and PDMS matrices.

		Lifetime (µs)		
	-	Pivaloyl porphyrin /PPMA	Pivaloyl porphyrin /PDMS	
5 μΜ	Air	17.68±1.72	8.15±0.46	
	Nitrogen	92.81±3.66	65.16±4.16	
10 µM	Air	19.75±0.98	8.28±0.40	
	Nitrogen	94.90±1.22	68.72±6.00	
30 µM	Air	18.15±2.35	8.61±1.08	
	Nitrogen	96.17±1.56	58.44±6.17	
60 µM	Air	16.39±0.18	8.78±0.15	
	Nitrogen	96.86±0.90	67.50±3.02	
90 µM	Air	16.77±0.40	11.15±1.89	
	Nitrogen	94.78±4.04	66.68±3.65	

Table S3: Phosphorescence lifetimes of different concentrations of pivaloyl porphyrin embedded within PPMA and PDMS under air and nitrogen conditions.

Figure S 5: Photostability of coumarin/PPMA upon continuous illumination for 3 hours under air condition.

Figure S 6: Autofluorescence images of blank rabbit ear, ear with plain filter puck or oxygen-sensing puck with the corresponding emission spectrum.