Supporting Information

Broad Band and Massive Stokes Shift Luminescence in Fully Inorganic 2D

Layered Perovskite CsPb₂Cl₅: Single Crystal Growth and Self-Trapped Exciton

Emission

Qing Yao¹, Jie Zhang¹, Kaiyu Wang¹, Lin Jing¹, Xiaohua Cheng¹, Chenyu Shang¹,

Jianxu Ding^{*, 1}, Weiwei Zhang ¹, Haiqing Sun^{*, 1}, Tianliang Zhou^{*, 2}

1. College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China;

2. College of Materials, Xiamen University, Xiamen 361005, China;

1. Descriptions of the raw materials purity and crystal growth process

Figure S1. (a) XRD patterns of CsCl and PbCl₂; (b) The solution dissolved CsCl and PbCl₂; (c) Light yellow solution after growing for a period; (d) The pH value of the solution; (e) Large number of spontaneous small opaque crystals.

2. Pure CsPb₂Cl₅ and CsPb₂(Cl_{0.95}Br_{0.05})₅ single crystals

Figure S2. (a-b) Photos of pure CsPb₂Cl₅ SCs grown with the molar ratio of CsCl to

 $PbCl_2 of 1:1 and 1:2 respectively; (c) Photo of CsPb_2(Cl_{0.95}Br_{0.05})_5 SC.$

3. (002) planes XRD patterns of CsPb₂Cl₅ and CsPb₂(Cl_{0.95}Br_{0.05})₅ SCs

Figure S3. (a-b) Magnified XRD of pure CsPb₂Cl₅ and CsPb₂(Cl_{0.95}Br_{0.05})₅ for (002) plane.

4. The bond lengths and bond angles of [Pb-Cl]₈ and [Cs-Cl]₁₀ polyhedrons

Atoms	Pb		Cs		
Neighbor Cl	2 Cl ₁	$2 \ Cl_2$	4 Cl ₃	2 Cl ₄	8 Cl ₅
Distance (Å)	2.753(8)	3.024(7)	3.210(3)	3.693(2)	3.589(6)

Table S1. List of Pb-Cl and Cs-Cl bond lengths in [Pb-Cl]₈ and [Cs-Cl]₁₀ polyhedrons.

Table S2. List of bond angles between neighbor [Pb-Cl]₈ and [Cs-Cl]₁₀ polyhedrons.

Atoms1-2-3	Angle1-2-3 (°)	Atoms1-2-3	Angle1-2-3 (°)
Cl ₁ -Pb-Cl ₁	84.306(57)	Cl ₄ -Cs-Cl ₄	180.000
Cl ₁ -Pb-Cl ₂	76.687(36)	Cl ₄ -Cs-Cl ₅	59.068(44)
Cl ₂ -Pb-Cl ₂	143.809(22)	Cl ₄ -Cs-Cl ₅	120.932(47)
Cl ₁ -Pb-Cl ₃	93.477(51)	Cl ₅ -Cs-Cl ₅	74.679(41)
Cl ₁ -Pb-Cl ₃	146.455(56)	Cl ₅ -Cs-Cl ₅	118.136(37)
Cl ₂ -Pb-Cl ₃	70.263(32)	Cl ₅ -Cs-Cl ₅	73.558(58)
Cl ₂ -Pb-Cl ₃	135.419(34)	Cl ₅ -Cs-Cl ₅	76.845(39)
Cl ₃ -Pb-Cl ₃	67.050(48)	Cl ₅ -Cs-Cl ₅	139.116(42)
Cl ₃ -Pb-Cl ₃	70.296(44)	Cl ₅ -Cs-Cl ₅	144.241(42)
Cl ₃ -Pb-Cl ₃	105.837(50)	Cs-Cl ₄ -Cs	57.288(13)
Pb-Cl ₁ -Pb	91.324(45)	Cs-Cl ₅ -Cs	106.442(41)
Pb-Cl ₂ -Pb	90.000		
Pb-Cl ₃ -Pb	74.163(36)		

5. Full XPS profiles of CsPb₂Cl₅ and CsPb₂(Cl_{0.95}Br_{0.05})₅ SCs

Figure S4. (a-b) Full XPS profiles of $CsPb_2Cl_5$ and $CsPb_2(Cl_{0.95}Br_{0.05})_5$ SCs.

6. XPS binding energy of CsPb₂Cl₅ and CsPb₂(Cl_{0.95}Br_{0.05})₅ SCs

Samples	Binding Energy(eV)			
Elements	CsPb ₂ Cl ₅	CsPb ₂ (Cl _{0.95} Br _{0.05}) ₅		
Cs-3d	723.8	723.5		
	737.8	737.5		
Pb-4f	138.6	138.7		
	143.5	143.5		
Cl-2p	197.9	197.9		
	199.5	199.4		
Br-3d		67.9		
		67.0		

Table S3. Comparison of XPS binding energy of $CsPb_2Cl_5$ and $CsPb_2(Cl_{0.95}Br_{0.05})_5$ SCs.

7. The PL spectra of different references, CsPb₂Cl₅ and CsPb₂(Cl_{0.95}Br_{0.05})₅ powders

Figure S5. (a-b) The PL spectra of different reference substances, $CsPb_2Cl_5$ and $CsPb_2(Cl_{0.95}Br_{0.05})_5$ crystal.

8. Photoluminescence spectra of CsPb₂Cl₅ and CsPb₂(Cl_{0.95}Br_{0.05})₅ SCs obtained

at various excitation energy densities

Figure S6. (a-d) Photoluminescence spectra of $CsPb_2Cl_5$ and $CsPb_2(Cl_{0.95}Br_{0.05})_5$ SCs obtained at various excitation energy densities under the excitation of 290 and 310 nm.

9. The XRD of initial CsPb₂Cl₅ and after soaking for 2 hours using a 306 nm illumination.

Figure S7. (a-b) The XRD and Magnified XRD of initial CsPb₂Cl₅ and after soaking for 2 hours using a 306 nm illumination.