Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Contents

- 1. Materials and measurements
- 2. Synthesis of the monomers and polymers
- 3. GPC curves
- 4. Optical and electrochemical properties
- 5. Solar cells performances
- 6. SCLC measurements
- 7 NMR of the compounds
- 8. References

1. Materials and measurements

¹H-NMR and ¹³C-NMR spectra were recorded at 400 MHz and 100 MHz on a Bruker AVANCE spectrometer with tetramethylsilane (TMS) as the internal standard. The Molecular weight was determined with GPC at 150 °C on a PL-GPC 220 system using a PL-GEL 10 μm Olexis column and 1, 2, 4-trichlorobenzene as the eluent against polystyrene standards. Optical absorption spectra were recorded on a JASCO V-570 spectrometer with a slit width of 2.0 nm and a scan speed of 1000 nm min⁻¹. Cyclic voltammetry was performed under an inert atmosphere at a scan rate of 0.1 V s⁻¹ and 1 M tetrabutylammonium hexafluorophosphate in acetonitrile as the electrolyte, a glassy-carbon working electrode coated with samples, a platinum-wire auxiliary electrode, and an Ag/AgCl as a reference electrode. Thermogravimetric analysis data were obtained from a TGA8000 Thermogravimetric Analyzer (PerkinElmer), DSC measurement was performed on a DSC-250 apparatus.

Photovoltaic devices with inverted configuration were made by spin-coating a ZnO sol-gel at 4000 rpm for 60 s onto pre-cleaned, patterned ITO substrates. The photoactive layer was deposited by spin coating CB solution containing the polymer and the appropriate amount of DIO as processing additive. The thin films were then transferred into the N₂-filled glove box. MoO₃ (10 nm) and Ag (100 nm) were deposited by vacuum evaporation at ca. 7×10^{-5} Pa as the back electrode. The thickness of the active layer is about 75 nm.

The active area of the cells was 0.040 cm². The J-V curves were measured under AM1.5G illumination at 100 mW cm⁻² using an AAA solar simulator (XES-70S1, SAN-EI Electric Co., Ltd) calibrated with a standard photovoltaic cell equipped with a KG5 filter (certifi cated by the National Institute of Metrology) and a Keithley 2400 source-measure unit. The EQE data were obtained using a solar cell spectral response measurement system (QE-R3011, Enli Technology Co. Ltd). The film thickness data were obtained via a surface profilometer (Dektak XT, Bruker).

GIWAXS measurements were performed at SAXS/WAXS beamline, Australian Synchrotron ANSTO. Samples were prepared on Si substrates using identical blend solutions as those used in devices. The 15.2 keV X-ray beam was incident at a grazing angle of 0.08°-0.12°, selected to maximize the scattering intensity from the samples. The scattered x-rays were detected using a Dectris Pilatus 2M photon counting detector. Atomic force microscopy (AFM) images were recorded using a Digital Instruments Nano scope IIIa multimode atomic force microscope in tapping mode under ambient conditions.

The hole mobility of P1-P4 films in SCOSCs were measured by space charge limit current (SCLC) measurement with the device configuration of ITO/PEDOT:PSS/active layer/MoO₃/Ag. The electron mobilities were extracted from electron-only devices with the configuration of ITO/ZnO/active layer/Ca/Al. All film samples were prepared with the same measurement of the solar cell devices by spin-coating solutions in N₂-filled glove box and thermal annealed for 10 min. And the hole mobilities were calculated with the Mott-Gurney equation in the SCLC region (slope = 2 in log *J* vs log *V* plots):

$$J = \frac{9}{8}\varepsilon_0\varepsilon_r \mu \frac{V^2}{L^3}$$

(Equation S1)

Where ε_0 is the permittivity of the vacuum, ε_r is the dielectric constant of the polymer, and *L* is the thickness of the polymer layer.

2. Synthesis of the monomers and polymers

Scheme S1. The chemical structures of the monomers, polymers and their synthetic routes. (i) 2ethyhexan-1-amine, 2-butyloctan-1-amine, 2-hexyldecan-1-amine or 2-octyldodecan-1-amine in DMF at 120 °C, 12 h; (ii) NH₄OAc in AcOH at 100 °C, 4 h; (iii) K₂CO₃ in DMF at 70 °C, 24 h; (iv) Stille polymerization, Pd(PPh₃)₄ in toluene/DMF (10:1, v/v) at 115 °C, 48 h.

The monomer M5 were purchased from Solarmer Inc., Beijing. The compound 3, 6 and the monomer M2 were synthesized according to the literatures.^{1, 2}

2: 1 (1.2 g, 4.5 mmol) was dissolved in 50 ml dry DMF under an inert atmosphere, 2ethyhexan-1-amine (0.58 g, 4.5 mmol) was added. After the mixture was stirred at 120 °C for 12 h, the reactant quenched by brine, then extracted by dichloromethane (100 mL) and dried over anhydrous MgSO₄. After removing solvent, the crude product was dissolved in 50ml AcOH, NH₄OAc (2.71 g, 0.045 mol) was added. After the mixture was stirred at 100 °C for 4 h, the reactant quenched by water, then extracted by chloroform (100 mL) and dried over anhydrous MgSO₄. After removing solvent, the crude product was purified by silica gel chromatography (chloroform : petroleum ether, v/v = 2:1 as eluent) to obtain **2** (0.81 g, yield 48%) as off-white solid. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.75-8.82 (m, 4H), 8.56 (s, 1H), 4.13-4.17 (t, 2H), 1.94 (s, 1H), 1.24-1.40 (m, 8H), 0.88-0.96 (m, 6H). MS (MALDI-TOF) m/z: [M+H]⁺, Calcd for C₂₂H₂₂N₂O₄: 378.2; found: 379.1.

4: 1 (1.2 g, 4.5 mmol) was dissolved in 50 ml dry DMF under an inert atmosphere, 2hexyldecan-1-amine (1.09 g, 4.5 mmol) was added. After the mixture was stirred at 120 °C for 12 h, the reactant quenched by brine, then extracted by dichloromethane (100 mL) and dried over anhydrous MgSO₄. After removing solvent, the crude product was dissolved in 50ml AcOH, NH₄OAc (2.71 g, 0.045 mol) was added. After the mixture was stirred at 100 °C for 4 h, the reactant quenched by water, then extracted by chloroform (100 mL) and dried over anhydrous MgSO₄. After removing solvent, the crude product was purified by silica gel chromatography (chloroform : petroleum ether, v/v = 2:1 as eluent) to obtain **5** (1.12 g, yield 51%) as white solid. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.87 (s, 1H), 8.76-8.80 (m, 4H), 4.13 (d, 2H), 1.98 (s, 1H), 1.24-1.38 (m, 24H), 0.83-0.86 (m, 6H). MS (MALDI-TOF) m/z: [M+H]⁺, Calcd for C₃₀H₃₈N₂O₄: 490.3; found: 490.9.

5: 1 (1.2 g, 4.5 mmol) was dissolved in 50 ml dry DMF under an inert atmosphere, 2octyldodecan-1-amine (1.34 g, 4.5 mmol) was added. After the mixture was stirred at 120 °C for 12 h, the reactant quenched by brine, then extracted by dichloromethane (100 mL) and dried over anhydrous MgSO₄. After removing solvent, the crude product was dissolved in 50ml AcOH, NH₄OAc (2.71 g, 0.045 mol) was added. After the mixture was stirred at 100 °C for 4 h, the reactant quenched by water, then extracted by chloroform (100 mL) and dried over anhydrous MgSO₄. After removing solvent, the crude product was purified by silica gel chromatography (chloroform : petroleum ether, v/v = 2:1 as eluent) to obtain **5** (1.35 g, yield 55%) as white solid. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.81 (s, 1H), 8.75 (d, 4H), 4.13 (d, 2H), 1.99 (s, 1H), 1.22-1.37 (m, 32H), 0.83-0.88 (m, 6H). MS (MALDI-TOF) m/z: [M+H]⁺, Calcd for C₃₄H₄₆N₂O₄: 546.3; found: 548.0.

M1: 6 (122 mg, 0.12 mmol) was dissolved in 25 ml dry DMF, **2** (109.5 mg, 0.29 mmol) and potassium carbonate (83 mg, 0.6 mmol) were added. The mixture was stirred at 70 °C for 24 h, there were some creamy white solid separated out. The mixture was filtered and the creamy white solid was washed by hot water and hot acetone to obtain **M1** (140 mg, yield 72%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.74 (s, 8H), 7.56 (s, 2H), 7.19-7.20 (d, 2H), 6.88-6.89 (d, 2H), 4.16-4.20 (t, 4H), 4.12-4.16 (t, 4H), 2.88-2.91 (t, 4H), 1.92-1.95 (t, 2H), 1.73-1.78 (m, 8H), 1.30-1.43 (m, 48H), 0.92-0.95 (t, 6H), 0.85-0.88 (t, 6H). ¹³C NMR (400 MHz, CDCl3): δ (ppm) 163.2, 162.8, 147.8, 140.1, 135.9, 135.6, 130.9, 130.8, 127.9, 126.7, 126.6, 126.5, 126.0, 124.4, 122.4, 116.7, 44.6, 40.9, 37.9, 31.5, 30.6, 30.2, 29.5, 29.4, 29.3, 29.1, 28.6, 28.0, 27.0, 24.0, 23.0, 14.0, 10.5. MS (MALDI-TOF) m/z: [M+H]⁺, Calcd for C₈₆H₉₆Br₂N₄O₈S₄: 1600.45; found: 1601.5.

M3: 6 (122 mg, 0.12 mmol) was dissolved in 25 ml dry DMF, **4** (142.3 mg, 0.29 mmol) and potassium carbonate (83 mg, 0.6 mmol) were added. The mixture was stirred at 70 °C for 24 h, there were some white solid separated out. The mixture was filtered and the white solid was washed by hot water and hot acetone to obtain **M3** (173.2 mg, yield 78%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.74 (s, 8H), 7.55 (s, 2H), 7.19-7.20 (d, 2H), 6.88 (s, 2H), 4.16-4.20 (t, 4H), 4.11-4.13 (d, 4H), 2.88-2.91 (t, 4H), 1.98(s, 2H), 1.75-1.76 (d, 8H), 1.23-1.41 (m, 80H), 0.83-0.85 (m, 12H). ¹³C NMR (400 MHz, CDCl3): δ (ppm) 163.1, 162.8, 147.7, 140.1, 135.8, 135.6, 130.9, 130.8, 127.9, 126.7, 126.6, 126.5, 126.0, 124.4, 122.4, 116.7, 44.9, 40.9, 36.5, 31.8, 31.7, 31.6, 31.6, 31.5, 30.2, 29.9, 29.6, 29.5, 29.5, 29.4, 29.3, 29.2, 29.1, 28.0, 27.0, 26.4, 26.3, 22.6, 22.5, 14.1, 14.0. MS (MALDI-TOF) m/z: [M+H]⁺, Calcd for C₁₀₂H₁₂₈Br₂N₄O₈S₄: 1824.7; found: 1824.7.

M4: 6 (122 mg, 0.12 mmol) was dissolved in 25 ml dry DMF, **5** (158.6 mg, 0.29 mmol) and potassium carbonate (83 mg, 0.6 mmol) were added. The mixture was stirred at 70 °C for 24 h, there were some white solid separated out. The mixture was filtered and the white solid was washed by hot water and hot acetone to obtain **M4** (176.8 mg, yield 75%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.74 (s, 8H), 7.55 (s, 2H), 7.19-7.20 (d, 2H), 6.88-6.89 (d, 2H), 4.16-4.20 (t, 4H), 4.11-4.13 (d, 4H), 2.87-2.91 (t, 4H), 1.98(s, 2H), 1.74-1.78 (t, 8H), 1.21-1.41 (m, 96H), 0.83-0.88 (m, 12H). ¹³C NMR (400 MHz, CDCl3): δ (ppm) 163.1, 162.8, 147.7, 140.1, 135.9, 135.6, 130.9, 130.8, 127.9, 126.7, 126.6, 126.5, 126.0, 124.4, 122.4, 116.7, 44.9, 40.9, 36.5, 31.8, 31.8, 31.6, 31.6, 31.5, 30.2, 29.9, 29.6, 29.5, 29.5, 29.4, 29.3, 29.2, 29.1, 28.0, 27.0, 26.4, 26.3, 22.6, 14.0. MS (MALDI-TOF) m/z: $[M+H]^+$, Calcd for C₁₀₂H₁₂₈Br₂N₄O₈S₄: 1937.8; found: 1938.6.

P1: To a degassed solution of monomer M1 (40.04 mg, 25.0 µmol), M5 (25.19 mg, 25.1 µmol) in toluene (3 mL) and DMF (0.3 mL), Pd(PPh₃)₄ (0.90 mg, 0.78 µmol) was added. The mixture was stirred at 115 °C for 48 h. after which it was precipitated in methanol and filtered through a Soxhlet thimble. The polymer was extracted with acetone, hexane, dichloromethane and chlorobenzene. The chlorobenzene was evaporated and the polymer was precipitated in acetone. The polymer was collected by filtering over a 0.45 µm PTFE membrane filter and dried in a vacuum oven to yield P1 (45.04 mg, 85.1%) as dark blue solid. GPC (*o*-DCB, 140 °C): $M_n = 28.2 \text{ kg mol}^{-1}$, $M_w = 72.6 \text{ kg mol}^{-1}$ and $D_M = 2.57$.

P2: To a degassed solution of monomer M2 (42.85 mg, 25.0 µmol), M5 (25.11 mg, 25.0 µmol) in toluene (2.5 mL) and DMF (0.25 mL), Pd(PPh₃)₄ (0.89 mg, 0.77 µmol) was added. The mixture was stirred at 115 °C for 48 h. after which it was precipitated in methanol and filtered through a Soxhlet thimble. The polymer was extracted with acetone, hexane, dichloromethane and chlorobenzene. The chlorobenzene was evaporated and the polymer was precipitated in acetone. The polymer was collected by filtering over a 0.45 µm PTFE membrane filter and dried in a vacuum oven to yield P2 (45.82 mg, 82.2%) as dark blue solid. GPC (*o*-DCB, 140 °C): $M_n = 51.5$ kg mol⁻¹, $M_w = 106.5$ kg mol⁻¹ and $D_M = 2.07$.

P3: To a degassed solution of monomer M3 (45.66 mg, 25.0 µmol), M5 (25.13 mg, 25.0 µmol) in toluene (2.5 mL) and DMF (0.25 mL), Pd(PPh₃)₄ (0.91 mg, 0.78 µmol) was added. The mixture was stirred at 115 °C for 48 h. after which it was precipitated in methanol and filtered through a Soxhlet thimble. The polymer was extracted with acetone, hexane and trichloromethane. The trichloromethane was evaporated and the polymer was precipitated in acetone. The polymer was collected by filtering over a 0.45 µm PTFE membrane filter and dried in a vacuum oven to yield P3 (48.61 mg, 82.8%) as dark blue solid. GPC (*o*-DCB, 140 °C): M_n = 45.1 kg mol⁻¹, M_w = 103.3 kg mol⁻¹ and D_M = 2.29.

P4: Same procedure as for P3 was used, but now M4 (44.58 mg, 23.0 µmol) and M5 (23.08 mg, 23.0 µmol) were used as the monomers. Yield: 44.3mg (78.5%). GPC (*o*-DCB, 140 °C): M_n = 27.8 kg mol⁻¹, M_w = 56.3 kg mol⁻¹ and D_M = 2.02.

Scheme S2. The chemical structures and synthetic routes of PCIBDB-T. **M6** and PCIBDB-T were synthesized according to the literatures.³

3. GPC curves

Figure S1. GPC curves recorded at 140 °C with o-DCB as eluent. (a) P1, (b) P2, (c) P3, (d) P4.

4. Optical and electrochemical properties

Figure S2. Optical absorption spectra of the polymers in CHCl₃ solution.

Figure S3. Cyclic voltammograms of the polymer thin films. Potential vs. Fc/Fc⁺.

5. Solar cells performances

Table S1. Characteristics of P1-based solar cells spin coated from different solution and different thermal annealing temperature (10 min).

Solvent	Thermal Anneal	Thickness	$J_{ m sc}$	V _{oc}	FF	PCE
	[°C]	[nm]	[mA/cm ²]	[V]		[%]
CB	150	75	10.93	0.97	0.52	5.48
CB/DIO (1%)	150	75	11.32	0.97	0.54	5.89
CB/DIO (2%)	150	75	11.49	0.97	0.57	6.30
CB/DIO (3%)	150	75	11.49	0.96	0.54	5.94
CB/DIO (2%)	150	55	10.49	0.96	0.51	5.11
CB/DIO (2%)	150	75	11.05	0.98	0.57	6.20
CB/DIO (2%)	150	95	10.75	0.95	0.51	5.16
CB/DIO (2%)	RT	75	9.93	0.97	0.44	4.19
CB/DIO (2%)	150	75	11.49	0.97	0.57	6.30
CB/DIO (2%)	200	75	11.25	0.91	0.55	5.59

Table S2. Characteristics of P2-based solar cells spin coated from different solution and different thermal annealing temperature (10 min).

Solvent	Thermal Anneal	Thickness	$J_{ m sc}$	V _{oc}	FF	PCE
	[°C]	[nm]	[mA/cm ²]	[V]		[%]
CB	150	75	12.83	0.96	0.58	7.08
CB/DIO (1%)	150	75	12.31	0.96	0.65	7.59
CB/DIO (2%)	150	75	12.84	0.94	0.66	7.97
CB/DIO (3%)	150	75	12.19	0.94	0.68	7.80
CB/DIO (2%)	150	55	10.77	0.95	0.70	7.04

CB/DIO (2%)	150	75	12.84	0.94	0.66 0.62	7.97
CB/DIO (2%)	150	95	12.89	0.93		7.45
CB/DIO (2%)	RT	75	10.98	0.96	0.49	5.14
CB/DIO (2%)	150	75	12.84	0.94	0.66	7.97
CB/DIO (2%)	200	75	13.06	0.91	0.65	7.80

Table S3. Characteristics of P3-based solar cells spin coated from different solution and different thermal annealing temperature (10 min).

Solvent	Thermal Anneal	Thickness	$J_{\rm sc}$	$V_{\rm oc}$	FF	PCE
	[°C]	[nm]	[mA/cm ²]	[V]		[%]
CB	150	75	11.51	0.97	0.61	6.83
CB/DIO (1%)	150	75	11.68	0.96	0.64	7.15
CB/DIO (2%)	150	75	11.76	0.96	0.64	7.23
CB/DIO (3%)	150	75	11.27	0.96	0.64	6.90
CB/DIO (2%)	150	55	10.73	0.95	0.64	6.50
CB/DIO (2%)	150	75	11.76	0.96	0.64	7.23
CB/DIO (2%)	150	95	11.72	0.95	0.62	6.90
CB/DIO (2%)	RT	75	9.91	0.98	0.45	4.34
CB/DIO (2%)	150	75	11.76	0.96	0.64	7.23
CB/DIO (2%)	200	75	11.44	0.93	0.63	6.69

Table S4. Characteristics of P4-based solar cells spin coated from different solution and different thermal annealing temperature (10 min).

Solvent	Thermal Anneal	Thickness	$J_{ m sc}$	$V_{\rm oc}$	FF PCE
	[°C]	[nm]	[mA/cm ²]	[V]	[%]
CB	150	75	7.91	0.93	0.70 5.10
CB/DIO (1%)	150	75	7.94	0.92	0.69 5.06
CB/DIO (2%)	150	75	8.60	0.93	0.66 5.24
CB/DIO (3%)	150	75	8.44	0.92	0.66 5.12
CB/DIO (2%)	150	55	7.49	0.92	0.68 4.73
CB/DIO (2%)	150	75	8.59	0.93	0.66 5.24
CB/DIO (2%)	150	95	8.45	0.92	0.64 4.95
CB/DIO (2%)	RT	75	7.13	0.99	0.44 3.07
CB/DIO (2%)	150	75	8.59	0.93	0.66 5.24
CB/DIO (2%)	200	75	7.99	0.91	0.61 4.42

No.	$J_{\rm sc}$ [mA/cm ²]	$V_{\rm oc}$	FF	PCE [%]
1	11.49	0.97	0.57	6.30
2	11.19	0.97	0.58	6.27
3	10.85	0.96	0.60	6.27
4	11.81	0.96	0.55	6.24
5	11.70	0.96	0.55	6.18
6	11.72	0.96	0.54	6.08
average	11.46±0.34	0.96 ± 0.01	0.57±0.02	6.22±0.07

Table S5. Photovoltaic performances of 6 devices based on P1 fabricated from CB/DIO (2%) annealed at 150 °C for 10 min.

Table S6. Photovoltaic performances of 6 devices based on P2 fabricated from CB/DIO (2%) annealed at 150 °C for 10 min.

No.	$J_{\rm sc}$ [mA/cm ²]	$V_{\rm oc}$ [V]	FF	PCE [%]
1	12.84	0.94	0.66	7.97
2	12.41	0.95	0.67	7.92
3	12.42	0.94	0.68	7.92
4	12.46	0.94	0.67	7.87
5	11.88	0.94	0.70	7.79
6	12.32	0.93	0.67	7.73
average	12.39±0.28	$0.94{\pm}0.01$	0.68±0.01	7.87±0.08

Table S7. Photovoltaic performances of 6 devices based on P3 fabricated from CB/DIO (2%) annealed at 150 °C for 10 min.

No.	$J_{\rm sc}$ [mA/cm ²]	$V_{\rm oc}$ [V]	FF	PCE [%]
1	11.76	0.96	0.64	7.23
2	12.03	0.96	0.63	7.21
3	11.97	0.96	0.62	7.16
4	12.03	0.96	0.61	7.14
5	11.45	0.96	0.65	7.11
6	11.67	0.96	0.63	7.09
average	11.82 ± 0.21	$0.96{\pm}0.01$	0.63±0.01	7.16±0.05

Table S8. Photovoltaic performances of 6 devices based on P4 fabricated from CB/DIO (2%) annealed at 150 °C for 10 min.

No.	J _{sc} [mA/cm ²]	$V_{\rm oc}$ [V]	FF	PCE [%]

1	8.59	0.93	0.66	5.24
2	8.08	0.93	0.69	5.20
3	8.15	0.93	0.67	5.11
4	7.97	0.94	0.68	5.10
5	7.95	0.93	0.69	5.09
6	8.54	0.92	0.65	5.08
average	8.21±0.26	$0.93{\pm}0.01$	0.67 ± 0.01	5.14 ± 0.06

6. SCLC measurements

Figure S4. (a) Hole mobility extracted from SCLC measurement with hole-only devices (ITO/PEDOT:PSS/polymers/MoO₃/Ag) based on P1 - P4 films with the thickness of 138 nm, 141 nm, 115 nm and 110 nm (b) Electron mobility extracted from SCLC measurement with electron-only devices (ITO/ZnO/active layer/Ca/Al) based on P1 - P4 films with the thickness of 212 nm, 163 nm, 162 nm and 101 nm, respectively.

7. NMR of the compounds

Figure S5. ¹H-NMR of the compound 2 recorded in CDCl₃.

Figure S6. ¹H-NMR of the compound 4 recorded in CDCl₃.

Figure S7. ¹H-NMR of the compound 5 recorded in CDCl₃.

Figure S8. ¹H-NMR of the compound M1 recorded in CDCl₃.

Figure S9. ¹³C-NMR of the compound M1 recorded in CDCl₃.

Figure S10. ¹H-NMR of the compound M3 recorded in CDCl₃.

Figure S11. ¹³C-NMR of the compound M3 recorded in CDCl₃.

Figure S12. ¹H-NMR of the compound M4 recorded in CDCl₃.

Figure S13. ¹³C-NMR of the compound M4 recorded in CDCl₃.

Figure S14. ¹H-NMR of the polymer P1 recorded at 100 °C with 1,1,2,2-tetrachloroethane-d₂ as the solvent.

Figure S15. ¹H-NMR of the polymer P3 recorded at 100 °C with 1,1,2,2-tetrachloroethane-d₂ as the solvent.

Figure S16. ¹H-NMR of the polymer P4 recorded at 100 °C with 1,1,2,2-tetrachloroethane-d₂ as the solvent.

8. References

- 1. X. Jiang, J. Yang, S. Karuthedath, J. Li, W. Lai, C. Li, C. Xiao, L. Ye, Z. Ma, Z. Tang, F. Laquai and W. Li, *Angew Chem Int Ed Engl*, 2020, **59**, 21683-21692.
- 2. G. Feng, J. Li, F. J. M. Colberts, M. Li, J. Zhang, F. Yang, Y. Jin, F. Zhang, R. A. J. Janssen, C. Li and W. Li, *J Am Chem Soc*, 2017, **139**, 18647-18656.
- 3. Y. Wu, C. An, L. Shi, L. Yang, Y. Qin, N. Liang, C. He, Z. Wang and J. Hou, *Angew Chem Int Ed Engl*, 2018, **57**, 12911-12915.