Electronic Supplementary Information

Ultrafast resistive type γ -Fe₂O₃-rGO nanohybrids based humidity sensor – a

respiratory monitoring tool

Atul Kumar^a, Anil Kumar^{*a,b}, G.D Varma^{*a,c}

^aCentre of Excellence-Nanotechnology, Indian Institute of Technology Roorkee,

Roorkee-247667, India.

^bDepartment of Chemistry, Indian Institute of Technology Roorkee, Roorkee-

247667, India.

^cDepartment of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, India.

This pdf contains:

Figure S1-S10

Table S1

Fig. S1. The % response versus time plot against 5 to 95% RH for all fabricated sensors.

Fig. S2. XRD patterns of IG (0.1), and un-doped γ -Fe₂O₃.

Fig. S3. (a) Wide scan XPS spectra of IG (0.1) nanohybrid sensor. (b) Comparison of Fe 2p peak in γ -Fe₂O₃ and Fe₃O₄.

Materials	Oxygen species	Binding energy (eV)	Relative percentage (%)
Bare γ -Fe ₂ O ₃	OL	529.69	55.59
	O _v (vacancy)	531.40	40.41
	O _c (chemisorbed)	533.59	3.99
IG (0.1)	OL	529.66	30.241
	O _v (vacancy)	530.93	63.87
	O _c (chemisorbed)	533.11	5.99

Table S1. Fitting results of O 1s XPS spectra of un-doped γ -Fe₂O₃ and IG (0.1) nanohybrids.

Fig. S4. (a-b) FESEM images of IG (0.1) nanohybrids.

Fig. S5. Comparison of %response in case of FTG and silicon (Si) substrate.

Fig. S6. (a, b) Photograph showing that the measured contact angle of a water droplet on the FTG and SI substrate is 105° and 51°. (c, d) FE-SEM image of FTG and SI substrate.

Fig. S7. Set up for mastering different respiration rates and other activities.

Fig. S8. The normal breathing response and yawning response.

Fig. S9. (a, b) The plot of repeatability and stability data. (c) Selectivity of hybrid sensor.

Fig. S10. Comparison of % response in case of without N_2 environment and with N_2 environment.