

Supplementary Information

§1. Rietveld analysis and electron diffraction

Figure S1. Full-profile analysis of the washed iron oxide samples obtained at various temperatures.

Figure S2. Electron diffraction patterns (a - f) and radial-integrated ones (g - I) of the washed iron oxide samples obtained at various temperatures.

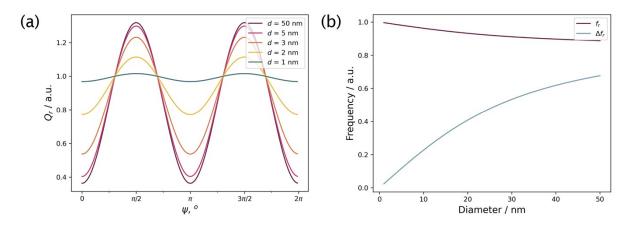
§2. FMR frequency modeling

According to the theory from ref. [I. S. Poperechny et al, *Phys. Rev. B*, 93(1), 014441, 2016] the frequency of ferromagnetic resonance for superparamagnetic particle can be expressed as:

$$Q_r = 1 - 2\varepsilon \frac{L_2(\xi_L)}{L_1(\xi_L)} P_2(\cos \psi),$$

where P_2 is the second Legendre polynomial, $L_1(x) = 1/\tanh x - 1/x$ and $L_2(x) = 1 - 3L_1(x)/x$ are Langevin functions, ψ – easy axis tilt angle, $\varepsilon = \frac{\gamma H_a}{2\omega} = \frac{\gamma H_a}{2\gamma H_a} = 1/2$, $\xi_L = \frac{\mu \omega}{\gamma k_B T} = \frac{M_S V \gamma K_u}{M_S \gamma k_B T} = \frac{K_u V}{k_B T}$, where ω – FMR frequency, H_a -anisotropy field, γ – gyromagnetic ratio, T – temperature, k_B – Boltzmann constant, K_u –

magnetic anisotropy constant, V – particle volume.


The resonance frequency for ensemble of randomly oriented magnetic particles we have determined as:

$$f_r = 0.5 \cdot (f_r(\psi = \pi/2) + f_r(\psi = 0)) = \frac{L_2 \left(\frac{K_u V}{k_B T}\right)}{2L_1 \left(\frac{K_u V}{k_B T}\right)} (P_2(\cos(\psi = 0)) + \frac{K_u V}{k_B T})$$

and the value, that is proportional to the linewidth as:

$$\Delta f_r = f_r(\psi = \pi/2) - f_r(\psi = 0) = \frac{L_2 \left(\frac{K_u V}{k_B T}\right)}{L_1 \left(\frac{K_u V}{k_B T}\right)} \left(P_2(\cos(\psi = 0)) - P_2(\cos(\psi = \pi/2))\right).$$

To calculate the f_r and the Δf_r for an ensemble of randomly oriented ϵ -Fe₂O₃ particles the following parameters T = 300 K, $K_u = 7.7 \cdot 10^6$ erg/cm³, $M_s = 15$ emu/g, d = 0 - 50 nm³, $k_B = 1.380649 \cdot 10^{-23}$ J/K were taken.

Figure S3. a) Q_r versus ψ for an epsilon oxide particle of various diameters; b) Ferromagnetic resonance frequency f_r and linewidth Δf_r ($\gamma \sim \Delta f_r$) as functions of the particle diameters in an ensemble of randomly oriented spherical ε -Fe₂O₃ particles with parameters: $K_u = 7.7 \cdot 10^6$

erg/cm³ [18], M_S = 15 emu/g. Data was calculated using the theory from ref. [I. S. Poperechny et al, *Phys. Rev. B*, 93(1), 014441, 2016].